Studying the optimization problem in discrete semi-markov model of continuous inventory control
Authors: Shnurkov P.V., Ivanov A.V. | Published: 11.09.2013 |
Published in issue: #3(50)/2013 | |
DOI: | |
Category: Economic modeling | |
Keywords: inventory control, semi-Markov process, optimal control |
The stochastic model of inventory control of a certain product, whose volume may take the values within an interval bounded above that belongs to the set of real numbers, is considered and investigated. This model consists of two components. One of them is named a basic process and describes the inventory level in the system under study; another is named a concomitant process and presents a controlled semi-Markov process with a finite set of states. The use of the concomitant process allows the theory of semi-Markov process control to be applied for solving the problem. The probabilistic characteristics of the concomitant semi-Markov process, as well as the characteristics of time-independent cost functionals connected with this process are determined. It is proved that a deterministic strategy is the optimal strategy for control. The explicit representation for the time-independent functional describing the quality ofprocess control is obtained. It is found that the optimal control strategy in the semi-Markov model is determined by a point ofglobal extremum of the function of several real variables. The explicit analytical expression of this function is found.
References
[1] Prabhu N.U. Queues and inventories. New York, John Wiley & Sons, 1965. 275 p. (Russ. ed.: Prabkhu A. Metody teorii massovogo obsluzhivaniya i upravleniya zapasami. Moscow, Mashinostroenie Publ., 1969. 324 p.).
[2] Ryzhikov Yu.I. Upravlenie zapasami [Inventory management]. Moscow, Nauka Publ, 1969. 343 p.
[3] Ryzhikov Yu.I. Teoriya ocheredey i upravlenie zapasami [Queuing theory and inventory control]. St. Petersburg, Piter Publ., 2001. 384 p.
[4] Lototskiy V.A., Mandel’ A.S. Modeli i metody upravleniya zapasami [Models and methods of inventory control]. Moscow, Nauka Publ., 1991. 189 p.
[5] Porteus E.L. Foundations of stochastic inventory theory. Stanford Univ. Press, 2002. 299 p.
[6] Daduna G., Knopov P.S., Tur L.P. Optimal strategies for the inventory system with cost functions of general form. Kibern. Sist. Anal. [Cybern. Syst. Anal.], 1999, no. 4, pp. 106-123 (in Russ.).
[7] Demchenko S.S., Knopov P.S., Chorney R.K. Optimal strategies for a semi-Markovian inventory system. Cybern. Syst. Anal., 2002, vol. 38, no. 1, pp. 124-136. doi: 10.1023/A:1015556518666
[8] Shnurkov P.V., Mel’nikov R.V. Optimal control of a continuous product inventory in the regeneration model. Obozr. Prikl. Prom. Mat. [Rev. Appl. Ind. Math.], 2006, no. 3, pp. 434-452 (in Russ.).
[9] Shnurkov P.V., Mel’nikov R.V. Analysis of the problem of continuous product inventory control under deterministic lead time. Autom. Remote Control, 2008, vol. 69, no. 10, pp. 1734-1751. doi: 10.1134/S0005117908100081
[10] Korolyuk V.S., Turbin A.F. Polumarkovskie protsessy i ikh prilozheniya [Semi-Markov processes and their applications]. Kiev, Naukova Dumka Publ., 1976. 184 p.
[11] Korolyuk V.S., Portenko N.I., Skorokhod A.V., Turbin A.F. Spravochnik po teorii veroyatnostey i matematicheskoy statistike [Handbook on the theory of probability and mathematical statistics]. Moscow, Nauka Publ., 1985. 640 p.
[12] Jewell W.S. Controlled semi-Markov processes. Kibern. Sb. Nov. Ser. [Cybern. Collect. New Ser.] Moscow, Mir Publ., 1967, no. 4, pp. 97-134 (in Russ.).
[13] Gnedenko B.V. Voprosy matematicheskoy teorii nadezhnosti [Problems of the mathematical theory of reliability]. Moscow, Radio i Svyaz’ Publ., 1983. 376 p.
[14] Kashtanov V.A. A class of optimal discrete controls in a semi-Markovian process. Tr. MIEM "Nekotorye teoreticheskie i prikladnye voprosy teorii veroyatnostey" [Proc. MIEM. "Some theoretical and applied problems in the theory of probability"]. 1975, no. 44, pp. 67-76 (in Russ.).
[15] Halmos P.R. Measure theory. New York, Springer Verlag, 1950. 304 p. (Russ. ed.: Khalmosh P. Teoriya mery. Moscow, Izdatel’stvo Inostrannoy Literatury Publ., 1953. 282 p.).
[16] Volkov I.K., Zuev S.M., Tsvetkova G.M. Sluchaynye protsessy [Stochastic processes]. Moscow, MGTU im. N.E. Baumana Publ., 1999. 448 p.