Mathematical Modeling of Phase Changes Processes in Cylindrical Energy Storages
Authors: Kosakian A.K., Kuvyrkin G.N. | Published: 08.02.2015 |
Published in issue: #1(58)/2015 | |
DOI: 10.18698/1812-3368-2015-1-99-112 | |
Category: Informatics, Computer Engineering and Control | Chapter: Mathematical Modelling. Numerical Methods, and Software Systems | |
Keywords: energy storage, phase change, heat utilization, heat recuperation, heat transfer in pipes |
The paper covers a brief overview on cylindrical energy storages with phase change. One-dimensional one-phase and two-phase problems of melting are considered as mathematical models of phase changes in heat storages. Recommendations on use of different ratios for determining heat transfer coefficient between heat transfer fluid and filler through the wall of the heat pipe are given for some particular cases of laminar and turbulent flow of heat transfer fluid. For calculations of one-phase model of melting filler the authors considered and justified possibility of using an approach similar to the Neumann solution for Stefan problem in rectangular coordinate system. Estimated time of phase change is given for the storage in which paraffin as filler and water as heat transfer fluid. Dependence for the position of liquid-solid interfaces from time and temperature distribution of filler liquid phase from radial coordinate have been illustrated.
References
[1] Sharma A., Tyagi V.V., Chen C.R., Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009, vol. 13, pp. 318-345. DOI: 10.1016/j.rser.2007.10.005
[2] Rathod M.K., Banerjee J. Numerical investigation on latent heat storage unit of different configurations. World Academy of Science, Engineering and Technology, 2011, vol. 51, pp. 813-818.
[3] Al-Abidi A., Sohif Bin Mat, Sopian K., Sulaiman M.Y., Lim C.H., Abdulrahman Th. Mohammad. Review of thermal energy storage for air conditioning systems. Renewable and Sustainable Energy Reviews, 2012, vol. 16, pp. 5802-5819. DOI: 10.1016/j.rser.2012.05.030
[4] Alexiades V., Solomon A.D. Mathematical modeling of melting and freezing processes. Bristol, PA, USA, Hemisphere Publishing Corporation, 1993. 336 p. Available at: http://www.math.utk.edu/vasili/475/Handouts/3.PhChgbk.1+title.pdf (accessed 01.11.2014).
[5] Bauer T. Approximate analytical solutions for the solidification of PCMs in fin geometries using effective thermophysical properties. Int. J. Heat Mass. Tran., 2011, vol. 54, pp. 4923-4930. DOI: 10.1016/j.ijheatmasstransfer.2011.07.004
[6] Poling B.E., Thomson G.H., Friend D.G., Rowley R.L., Wilding W.V. Perry’s chemical engineers’ handbook. 8th ed. New York, USA, McGraw-Hill, 2008. 521 p. Available at: http://ru.scribd.com/doc/136492507/Perry-s-Chemical-Engineers-Handbook-8th-Ed (accessed 01.11.2014).
[7] Ukrainczyk N., Kurajica S., Sipusic J. Thermophysical comparison of five commercial paraffin waxes as latent heat storage materials. Chem. and Biochem. Eng. Quarterly, 2010, vol. 24, pp. 129-137.
[8] Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Fundamentals of heat transfer]. 2nd ed. Moscow, Energiya Publ., 1977. 344 p.
[9] Welty J., Wicks C., Wilson R., Rorrer G. Fundamentals of momentum, heat, and mass transfer. 5th ed. Hoboken, New York, USA, John Wiley & Sons Inc., 2008. 711 p. Available at: http://ru.scribd.com/doc/120500803/Fundamentals-of-Momentum-Heat-and-Mass-Transfer-5th-Edition-Welty-Solutions-manual (accessed 01.11.2014).
[10] Kutateladze S.S. Osnovy teorii teploobmena [Fundamentals of heat exchange theory]. 5th ed. Moscow, Atomizdat Publ., 1979. 416 p. Available at: http://teplotexnika.ucoz.ru/load/osnovy_teorii_teploobmena_s_s_kutateladze_1979_djvu/1-1-0-13 (accessed 01.11.2014).
[11] Kutateladze S.S., Borishanskiy V.M. Spravochnik po teploperedache [Heat transfer handbook]. Moscow, Gosenergoizdat Publ., 1958. 414 p. Available at: http://03-ts.ru/index.php?nma=downloads&fla=stat&idd=188 (accessed 01.11.2014).
[12] Bergman T., Lavine A., Incropera F., De Witt D. Fundamentals of heat and mass transfer. 7th ed. Hoboken, New York, USA, John Wiley & Sons Inc., 2011. 1080 p. Available at: http://ru.scribd.com/doc/96238403/Solutions-Manual-Fundamental-Of-Heat-and-Mass-Transfer-Frank-p-Incropera-David-p-dewitt (accessed 01.11.2014).
[13] Luke Y.L. Mathematical functions and their approximations. New York, USA, Academic Press, 1975. 568 p. (Russ. Ed.: Lyuk Yu. Spetsial’nye matematicheskie funktsii i ikh approksimatsii. Per. s angl. Moscow, Mir Publ., 1980. 608 p.).
[14] Samarskiy A.A., Vabishchev P.N. Vychislitel’naya teploperedacha [Computational heat transfer]. Moscow, Editorial UrSs Publ., 2003. 784 p.