|

Effect of Earth’s oblateness on the track of low Earth orbit spacecraft

Authors: Kuvyrkin G.N., Khegab Tamer Makhmud Menshavi Akhmed Published: 04.09.2015
Published in issue: #4(61)/2015  
DOI: 10.18698/1812-3368-2015-4-102-114

 
Category: Informatics, Computer Engineering and Control | Chapter: Mathematical Modelling. Numerical Methods, and Software Systems  
Keywords: local value of albedo, satellite track, sub-satellite point, geodetic latitude, geocentric latitude

Two reference systems of geographical latitude (geocentric and geodetic) are considered in order to study the effect of the Earth’s oblateness on the satellite track while it moves along the low earth orbit. The developed computer models are used for analyzing the movement of the sub-satellite point on the Earth’s surface with respect to each of these reference systems. The largest possible differences in the sub-satellite point coordinates are estimated in the two systems according to the parameters of the satellite orbit.

References

[1] Zarubin V.S. Temperaturnye polya v konstruktsii letatel’nykh apparatov [The Temperature Fields in the Structure of an Aircraft]. Moscow, Mashinostroenie Publ., 1966. 216 p.

[2] Spacecraft thermal control handbook, cd. by D.G. Gilmor, vol. 1, El Segundo, California, Aerospace Press, 2002. 836 p.

[3] Karam R.M. Satellite thermal control for system engineer. American Institute of Aeronautics and Astronautics, 1998. 280 p.

[4] Bess T.D., Smith G.L. Atlas of wide field of view outgoing long wave radiation derived from Nimbus 7. Earth radiation budget data set - November 1978 to October 1985. NASA Ref. Publ., no. 1186. Aug. 1987. 174 p.

[5] Smith G.L., Rutan D., Bess T.D. Atlas of albedo and absorbed solar radiation derived from Nimbus 6. Earth radiation budget data set - July 1975 to May 1978. NASA Ref. Publ., no. 1230. 1990. 120 p.

[6] Bess T.D., Smith G.L. Atlas of wide field of view outgoing long wave radiation derived from Nimbus 7. Earth radiation budget data set - November 1985 to October 1987. NASA Ref. Publ., no. 1261. June 1991. 52 p.

[7] Smith G.L., Rutan D., Bess T.D. Atlas of albedo and absorbed solar radiation derived from Nimbus 7. Earth radiation budget data set - November 1985 to October 1987. NASA Ref. Publ., no. 1281. 1992. 58 p.

[8] Wiley J.L., James R.W. Space Mission Analysis and Design. California, Microcosm Press, 2005. 504 p.

[9] Meyer Rudolf X. Elements of space technology for aerospace engineers. San Diego, Academic Press, 1999. 329 p.

[10] Bate Roger R., Mueller Donald D., Jerry E. Fundamentals of astrodynamics. N.Y., Dover publications, 1971. 455 p.

[11] Seeber G. Satellite geodesy: foundations, methods and applications. N.Y., Walter de Gruyter, 2008. 609 p.

[12] El’yasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli [Introduction to the Theory of an Artificial Satellite Flight]. Moscow, Knizhnyy dom Librokom Publ., 2014. 544 p.

[13] Roy A.E. The Foundations of Astrodynamics. N.Y., Macmillan, 1965.

[14] Bettner M. Tools for satellite ground track and coverage analysis. Ohio, Air force inst. of tech, Wright-Patterson AFB, 1995. 60 p.

[15] Michel C. Satellite orbits and missions. France, Springer-Verlag, 2005. 544 p.

[16] Sandip T.A., Shashikala A.G. Simplified orbit determination algorithm for low earth orbit satellite using space borne GPS navigation sensor. Artificial Satellite, 2014, vol. 49, no. 2, pp. 81-99.

[17] Kelso T.S. Orbital coordinate systems. Part III. Satellite Times, 1996, vol. 2, no. 3, pp. 78-79.

[18] Tokareva O.S. Obrabotka i interpretatsiya dannykh distantsionnogo zondirovaniya Zemli [Processing and Interpretation of Remote Earth Sensing Data]. Tomsk, TPU Publ., 2010. 148 p.

[19] Anil K.M., Varsha A. Satellite technology, principles and applications. Manhattan, John Wiley and Sons, 2011. 694 p.

[20] Fortescue P., Swinerd G., Stark J. Spacecraft system engineering. Manhattan, John Wiley and Sons, 2011. 752 p.

[21] Panteleev V.L. Teoriya figury Zemli. Kurs lektsiy [Theory of the Earth Figure. Lecture Course]. Moscow, 2000. URL: http://www.astronet.ru/db/msg/1169819/node1.html (accessed 05.03.2015).

[22] Hedgley D.R., Jr. An exact transformation from geocentric to geodetic coordinates for nonzero altitudes. NASA TR R-458, March, 1976.

[23] Gerhard B. Methods of celestial mechanics. Vol. II: application to planetary systems, geodynamics and satellite geodesy. Berlin, Heidelberg, Springer-Verlag, 2005. 448 p.

[24] Brian D.H., Daniel T.V. Essential MATLAB for engineers and scientists. Elsevier Ltd, 2007. 428 p.

[25] Okhotsimskiy D.E., Sikharulidze Yu.G. Osnovy mekhaniki kosmicheskogo poleta [Principles of Space Flight Mechanics]. Moscow, Nauka Publ., 1990. 445 p.

[26] Beletskiy V.V. Ocherki o dvizhenii kosmicheskikh tel. [Essays about the Movement of Celestial Bodies]. Moscow, Knizhnyy dom Librokom Publ., 2013. 432 p.