Mathematical modelling of dielectric properties of nanostructural composites using asymptotic homogenizing method
Authors: Dimitrienko Yu.I., Gubareva E.A., Markevich M.N., Sborschikov S.V. | Published: 16.02.2016 |
Published in issue: #1(64)/2016 | |
DOI: 10.18698/1812-3368-2016-1-76-89 | |
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control and Information Processing | |
Keywords: nanostructural composites, asymptotic homogenizing method, carbon nanotubes, effective inductive capacity, method of finite elements |
The paper presents a mathematical model for calculating effective dielectric properties of the composites modified by nanoinclusionson exposure to the external oscillating electrical field. The model is based on the asymptotic homogenizing method for differential equations of electrodynamics with rapidly oscillating coefficients. The local problem of electrodynamics on a composite periodicity cell is formulated. To solve the problem, the authors use the method of finite elements implemented in the SMCM software package developed in the Scientific Educational Center SIMPLEX at Bauman Moscow State Technical University. Both the CSIR storage schemes of discharged matrices and the method of biconjugate gradients are used. A settlement cycle of complex effective inductive capacity of a polymer composite with different carbon nanotube concentrations is performed. The authors consider the influence of nanotube cluster formations on generation of the nonmonotonous concentration dependence of the composite inductive capacity. The analysis of frequency dependence of dielectric loss tangent is carried out resulting in a good agreement with the experimental data.
References
[1] Gefle O.S., Lebedev S.M., Pokholkov Yu.P. Complex permittivity frequency spectra of composite dielectrics on the basis of polyvinylchloride. Bulletin of the Tomsk Polytechnic University, 2007, vol. 310, no. 1, pp. 82-85.
[2] Emetch Yu.P. Effective permittivity of three-phase composite materials with an anisotropic structure. Technical Physics, 2005, vol. 50, iss. 2, pp. 207-212.
[3] Muradyan V.E., Sokolov E.A., Babenko S.D., Moravskiy A.P. Microwave dielectric properties of composites modified by carbon nanostructures. Technical Physics, 2010, vol. 50, iss. 2, pp. 242-246.
[4] Kettunen H., Qi J., Wallen H., Sihvola A. Frequency dependence of effective permittivity of simple dielectric composites. Proceedings of ACES. Tampere, Finland, 2010, pp. 248-253.
[5] Bakhvalov N.S., Panasenko G.P. [Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials]. Springer, 1989. 352 p.
[6] Bensoussan A., Lions J.L., Papanicalaou G. Asymptotic analysis for periodic structures. Amsterdam, N.Y., North-Holland Publ. Co., 1978. 396 p.
[7] Sanchez-Palencia E. Boundary layers and edge effects in composites. Lecture notes in Physics, 1987, no. 272, pp. 121-192.
[8] Shelukhin V.V., Terent’ev S.A. Homogenization of Maxwell equations and the Maxwell-Wagner dispersion. Doklady Earth Sciences, 2009, vol. 424, no. 1, pp. 155-159.
[9] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones. Mathematical Modeling and Computational Methods, 2014, no. 4. pp. 3-17 (in Russ.).
[10] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. Estimation of effective of moduli of materials modified by fullerene. Composites and nanostructures, 2011, no. 4, pp. 21-31.
[11] Dimitrienko Yu.I., Kaskarov A.I. Finite-element method for calculation of effective characteristic of three-dimensional reinforced composites. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2002, no. 2, pp. 95-108 (in Russ.).
[12] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V. Asymptotic theory of constructive-orthotropic plates with two-periodic structures. Mathematical Modeling and Computational Methods, 2014, no. 1, pp. 36-57 (in Russ.).
[13] Dimitrienko Yu.I., Gubareva E.A., Yakovlev D.O. Asysymptotic theory of viscoelasic multilayer thin composite plates. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2012, no. 12, pp. 359-382. DOI: 10.7463/1014.0730105
[14] Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V. Asymptotic theory of thermocreep for multilayer thin plates. Mathematical Modeling and Computational Methods, no. 4, 2014, pp. 36-57 (in Russ.). DOI: 10.7463/0113.0531682
[15] Dimitrienko Yu.I., Sokolov A.P., Markevich M.N. Modeling of dielectric properties of composite materials on the basis of asymptotic averaging. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2013, no. 1, pp. 49-64. DOI: 10.7463/0113.0531682
[16] Landau L.D., Lifshitz E.M. Course of Theoretical Physics. Vol. 8. Electrodynamics of Continuous Media. 2nd ed. Butterworth-Heinemann, 1979. 460 p.
[17] Dimitrienko Yu.I. Mekhanika sploshnoi sredy [Continuum mechanics]. Vol. 2. Universal’nyhe zakoni mekhaniki i elektrodinamiki sploshnikh sred [Universal continuum laws of mechanics and electrodynamics]. Moscow, MGTU im. N.E. Baumana Publ., 2011. 560 p.