Image Quality Assessment by Upsampling Methods Based on Spatial Spectrum Extrapolation

Authors: Ignatyev V.Yu., Matveev I.A., Murynin A.B., Trekin A.N. Published: 14.02.2017
Published in issue: #1(70)/2017  
DOI: 10.18698/1812-3368-2017-1-124-141

Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control and Information Processing  
Keywords: upsampling, spectral synthesis, quality assessment

The study tested two methods of image enhancement using spectral representations. The first approach is based on the assumption that the required information about the high spatial resolution details is obtained from the additional reference image. High-resolution image is constructed using a combination of spatial spectra of the main and reference images. The second approach does not require the use of additional external information (reference image). High-resolution image is synthesized by the analytic continuation of the original image spectrum to the region of high spatial frequencies. We carried out a study into the selection of a numerical measure of image similarity (difference) in the quality assessment problem. We found optimal parameters of spectral synthesis at a given spatial resolution and compared the results of quality assessment of the images enhanced by Lanczos interpolation and by developed methods with the optimal parameters.


[1] Bondur V.G. Modern approaches to processing large hyperspectral and multispectral aerospace data flows. Izvestiya, Atmospheric and Oceanic Physics, 2014, vol. 50, no. 9, pp. 840852. DOI: 10.1134/S0001433814090060

[2] Bondur V.G., Zverev A.T. A method of earthquake forecast based on the lineament analysis of satellite images. Doklady Earth Sciences, 2005, vol. 402, no. 4, pp. 561-567.

[3] Bondur V.G. Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia. Izvestiya, Atmospheric and Oceanic Physics, 2011, vol. 47, no. 9, pp. 1039-1048. DOI: 10.1134/S0001433811090040

[4] Bondur V.G., Smirnov V.M. Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems. Doklady Earth Sciences, 2005, vol. 403, no. 5, pp. 736-740.

[5] Bondur V.G., Kiler R.N., Starchenkov S.A., Rybakova N.I. Monitoring of the pollution of the ocean coastal water areas using space multispectral high resolution imagery. Issledovanie Zemli iz kosmosa, 2006, no. 6, pp. 42-49 (in Russ.).

[6] Bondur V.G., Zubkov E.V. Showing up the small-scale ocean upper layer optical inhomogeneities by the multispectral space images with the high surface resolution. Part 1. The canals and channels drainage effects at the coastal zone. Issledovaniya Zemli iz kosmosa, 2005, no. 4, pp. 54-61 (in Russ.).

[7] Bondur V.G. Aerospace monitoring methods and techniques for oil-and-gas territories and complexes of oil-and-gas object. Issledovanie Zemli iz kosmosa, 2010, no. 6, pp. 3-17 (in Russ.).

[8] Bondur V.G., Dulov V.A., Murynin A.B., Yurovskiy Yu.Yu. Research on wave spectrum in wide wavelength band using satellite and contact data. Issledovame Zemli iz kosmosa, 2016, no. 1-2, pp. 7-24 (in Russ.). DOI: 10.7868/S0205961416010048

[9] Murynin A.B. Spatial seasurface spectrum reconstruction using optical images in nonlinear field of brightness model. Issledovame Zemli iz kosmosa, 1990, no. 6, pp. 60-70 (in Russ.).

[10] Bondur V.G., Murynin A.B. Reconstruction methods for seavawe spectrum using aerospace images spectrum. Issledovame Zemli iz kosmosa, 2015, no. 6, pp. 3-14 (in Russ.). DOI: 10.7868/S0205961415060020

[11] Bondur V.G. The methods of the emission model field which be formed on enter of airspace remote sensing system. Issledovame Zemli iz kosmosa, 2000, no. 5, pp. 16-27 (in Russ.).

[12] Bochkareva V.G., Matveev I.A., Murynin A.B., Tsurkov V.I. Methods for improving image quality using spatial spectral analysis. Journal of Computer and Systems Sciences International, 2015, vol. 54, no. 6, pp. 897-904. DOI: 10.1134/S1064230715060027

[13] Gurchenkov A.A., Bochkareva V.G., Murynin A.B., Trekin A.N. Image quality improvement by method of spatial spectrum extrapolation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 2, pp. 91-102. DOI: 10.186981/1812-3368-2016-2-91-102

[14] Trekin A.N., Matveev I.A., Murynin A.B., Bochkareva V.G. A method for upsampling of remote sensing images using vector data for preserving edges. Mashinnoe obuchenie i analiz dannykh [Journal of Machine Learning and Data Analysis], 2015, vol. 1, no. 12, pp. 1717-1730. DOI: 10.1109/83.951537

[15] Matveev I.A., Murynin A.B. Identification of objects on the basis of stereo images: Optimization of algorithms for reconstruction of a surface. Journal of Computer and Systems Sciences International, 1998, vol. 37, no. 3, pp. 487-493 (Russ. version: Izvestiya RAN. Teoriya i sistemy upravleniya, 1998, vol. 37, no. 3, pp. 149-155).

[16] Amro I., Mateos J., Vega M., Molina R., Katsaggelos A.K. A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP Journal on Advances in Signal Processing, 2011, vol. 1, no. 79, pp. 1-22. DOI: 10.1186/1687-6180-2011-79

[17] Getreuer P. Linear methods for image interpolation. Image Processing On Line, 2011, vol. 1. Available at: http://dx.doi.org/10.5201/ipol.2011.g_lmii (accessed 18.06.2016).

[18] Turkowski K., Gabriel S. Filters for common resampling tasks. In: Graphics gems I. Boston, Acad. Press, 1990. Pp. 147-165.

[19] Su D., Willis P. Image interpolation by pixel level data-dependent triangulation. Computer Graphics Forum, 2004, vol. 23, pp. 189-202. DOI: 10.1111/j.1467-8659.2004.00752.x

[20] Tappen M.F., Russell B.C., Freeman W.T. Efficient graphical models for processing images. Computer Vision and Pattern Recognition, 2004, pp. 673-680. DOI: 10.1109/CVPR.2004.89

[21] Tsurkov V.I. An analytical model of edge protection under noise suppression by anisotropic diffusion. J. Computer and Systems Sciences International, 2000, vol. 39, no. 3, pp. 437-440.

[22] Aly H., Dubois E. Image up-sampling using total variation regularization with a new observation model. IEEE Transactions on Image Processing, 2005, vol. 14, no. 10, pp. 1647-1659. DOI: 10.1109/TIP.2005.851684

[23] Bevilacqua M. Algorithms for super-resolution of images and videos based on learning methods. Image Processing. Universite Rennes, 2014, vol. 1. Available at: https://people.rennes.inria.fr/Christine.Guillemot/theseMarco.pdf (accessed 14.08.2016).

[24] Vizil’ter Yu.V., Zheltov S.Yu. Problems of technical vision in aviation systems. Mekhanika, upravlenie i informatika [Mechanics, Control and Informatics], 2011, no. 6, pp. 11-44 (in Russ.).

[25] Bondur V.G. Phase-spectral method’s modeling of two-dimension stochastic brightness field, formed at the airspace apparatus entrance. Issledovanie Zemli iz kosmosa, 2000, no. 5, pp. 28-44 (in Russ.).

[26] Zomet A., Peleg S. Multi-sensor super-resolution. Applications of Computer Vision, 2002. (WACV-2002). Proceedings. Sixth IEEE Workshop on. IEEE, 2002, pp. 27-31. DOI: 10.1109/ACV.2002.1182150

[27] Matveev I.A., Murynin A.B. Principles of development of a stereovision system for motion control of a robot. Journal of Computer and Systems Sciences International, 2003, vol. 42, no. 3, pp. 490-498.

[28] Soyfer V.A., ed. Metody komp’yuternoy obrabotki izobrazheniy [Methods of image computer processing]. Moscow, Fizmatlit Publ., 2003. 782 p.

[29] Gonzalez R.C., Woods R.E. Digital image processing. Prentice Hall, 2002.

[30] Wang Z., Simoncelli E.P. Translation insensitive image similarity in complex wavelet domain. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP ’05), 2005, vol. 2, pp. 573-576. DOI: 10.1109/ICASSP.2005.1415469