|

On Approximation of Random Variables

Authors: Ismagilov R.S. Published: 14.09.2014
Published in issue: #4(55)/2014  
DOI:

 
Category: Mathematics and Mechanics  
Keywords: random variable, approximation, conditional mathematical expectation, characteristic function, distribution

The article deals with the best approximation of a random variable by a set of random variables. Approximation by means of linear combinations of the above set is rather common. In the article this approach is extended to use of polynomial functions of this set elements. If degrees of polynomials are arbitrary then it results in approximation by means of a conditional mathematical expectation of a random variable concerning this set. Linear spaces of random variables are described in which the specified methods of approximation result in the same result.

References

[1] Akhiezer N.I. Lektsii po teorii approksimatsii [Lectures on the theory of approximation]. Moscow, Nauka Publ., 1965. 408 p.

[2] Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional’nogo analiza [Elements of the theory of functions and functional analysis]. Moscow, Nauka Publ., 1972. 496 p.

[3] Riesz F., Szokefalvi-Nagy B. Lecons d’Analyse Fontionelle. Budapest, Akademiai Kiado. 1952. (Russ. Ed.: Riss F., Sekefal’vi-Nad’ B. Lektsii po funktsional’nomu analizu. Moscow, Mir Publ., 1979. 587 p. Eng. Ed.: Riss F., Sekefalvi-Nad’ B. Functional analysis. New York, Ungar Publ., 1955).

[4] Tikhomirov V.M. Nekotorye voprosy teorii priblizheniy [Some problems in approximation theory]. Moscow, MGU Publ., 1976. 304 p.

[5] Walsh J.L. Interpolation and Approximation by Rational Functions in the Complex Domain. Paperback (Print). 3rd Ed. American Mathematical Society Puibl., 1935. 406 p. (Russ. Ed.: Uolsh Dzh L. Interpolyatsiya i approksimatsiya ratsional’nymi funktsiyami v kompleksnoy oblasti Moscow, Inostrannaya Lit. Publ., 1961. 508 p.).

[6] Teoriya priblizheniy [Approximation Theory]. SPb, Collect. Rep. Abstr., Int. Conf. of Euler Int. Math. Inst., VVM Publ., 2010. 148 p.

[7] Gikhman I.I., Skorokhod A.V. Teoriya sluchaynykh protsessov [The theory of stochastic processes]. Moscow, Nauka Publ., Vol. 1, 1971. 665 p.

[8] Gnedenko B.V. Kurs teorii veroyatnostey [Course on probability theory]. Moscow, Nauka Publ., 1988. 448 p.

[9] Ibragimov I.A., Rozanov Yu.A. Gaussovskie sluchaynye protsessy [Gaussian stochastic processes]. Moscow, Nauka Publ., 1970. 384 p.

[10] Shiryaev A.N. Veroyatnost’ [The probability]. Moscow, Nauka Publ., 1976. 640 p.