|

Solving terminal problems for multidimensional affine systems based on transformation to a quasicanonical form

Authors: Fetisov D.A.  Published: 04.10.2014
Published in issue: #5(56)/2014  
DOI:

 
Category: Mathematics and Mechanics  
Keywords: affine system, control, quasicanonical form, terminal problem

The paper considers a terminal problem for multidimensional affine systems, which are not linearizable by a feedback. The affine system is transformed to a regular quasicanonical form using a smooth nondegenerate change of variables within the range ofstates. In addition, the terminal problem for the initial system is transformed to the equivalent terminal problem for the system of a quasicanonical form. A method of solving the terminal problems is proposed for the quasicanonical systems, which is based on a concept of dynamics inverse problems generalization. The sufficient condition for applying the proposed method is proved. The numerical procedure of solving the terminal problems for the systems of a quasicanonical form is proposed. There is an example ofsolution development of a terminal problem for a sixth-order system using the above-mentioned method. The obtained results may be used for solving problems of terminal control over technical systems.

References

[1] Krasnoshchechenko V.I., Krishchenko A.P. Nelineynye sistemy: geometricheskie metody analiza i sinteza [Nonlinear systems: geometric methods for analysis and synthesis]. Moscow, MGTU im. N.E. Baumana Publ., 2005. 520 p.

[2] Elkin V.I. Reduktsiya nelineynykh upravlyaemykh sistem: differentsial’no-geometricheskiy podkhod [Reduction of nonlinear controlled systems: a differential geometric approach]. Moscow, Nauka Publ., 1997. 320 p.

[3] Agrachev A.A., Sachkov Yu.L. Geometricheskaya teoriya upravleniya [Geometric control theory]. Moscow, Fizmatlit Publ., 2005. 392 p.

[4] Zhevnin A.A., Krishchenko A.P. Controllability of nonlinear systems and synthesis of control algorithms. Dokl. Akad. NaukSSSR [Proc. Acad. Sci. USSR], 1981, vol. 258, no. 3, pp. 805-809 (in Russ.).

[5] Sachkova E.F. Approximative solution of two-point boundary value problems for systems with linear control. Avtom. Telemekh. [Automation and Remote Control], 2009, no. 4, pp. 179-189 (in Russ.).

[6] Emel’yanov S.V., Krishchenko A.P., Fetisov D.A. Research of controllability of affine systems. Dokl. RAN [Proc. Russ. Acad. Sci.], 2013, vol. 449, no. 1, pp. 15-18 (in Russ.).

[7] Krishchenko A.P., Fetisov D.A. Transformation of affine systems and solving problems of termination control. Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 3-16 (in Russ.).

[8] Krishchenko A.P., Fetisov D.A. Terminal problem for multidimensional affine systems. Dokl. RAN [Proc. Russ. Acad. Sci.], 2013, vol. 452, no. 2, pp. 144-149 (in Russ.).

[9] Fetisov D.A. On a method for solving terminal control problems for affine systems. Jelektr. Nauchno-Tehn. Izd. "Nauka i obrazovanie" MGTU im. N.E. Baumana [El. Sc.-Tech. Publ. "Science and Education" of Bauman MSTU], 2013, no. 11. Available at: http://technomag.bmstu.ru/doc/622543.html (accessed 20.11.2013) (in Russ.). DOI: 10.7463/1113.0622543

[10] Krut’ko P.D. Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineynye modeli [Inverse problems for dynamics controlled systems. Nonlinear models]. Moscow, Nauka Publ., 1988. 328 p.

[11] Krishchenko A.P., Klinkovskiy M.G. Transformation of affine systems with control and the stabilization problem. Differ. Uravn. [Differ. Equations], 1992, vol. 28, no. 11, pp. 1945-1952 (in Russ.).

[12] Hartman Ph. Ordinary Differential Equations, 1st ed. N.Y., J. Wiley, 1964. (Russ. Ed.: Khartman F. Obyknovennye differentsial’nye uravneniya. Moscow, Mir Publ., 1970. 720 p.)

[13] Filippov A.F. Vvedenie v teoriyu differentsial’nykh uravneniy [Introduction to the differential equations theory]. Moscow, Editorial URSS Publ., 2004. 240 p.