|

Thermal Field of a Cylindrical Body During Cyclic Heating

Authors: Martinson L.K., Chigiryova O.Yu. Published: 17.06.2015
Published in issue: #3(60)/2015  
DOI: 10.18698/1812-3368-2015-3-88-98

 
Category: Mathematics and Mechanics | Chapter: Mathematical Physics  
Keywords: non-stationary heat transfer process, nonlinear mathematical model, discretization with respect to time variable, infinite set of linear algebraic equations

The article discusses the heating process of a cylindrical body under the cycling heat exposure onto its end surfaces. The mathematical model of the analyzed process includes a nonlinear differential equation of the parabolic type which considers a correlation between thermophysical properties of the matter and the temperature as well as the boundary conditions describing heat exchanges on the body surface. The article presents an algorithm of the non-stationary thermal field calculation based on the discretization of the differential equation with a small variable time step. At the k-th time step a temperature distribution within the cylindrical body is calculated by the double trigonometric Fourier series. Its coefficients are estimated by solving an infinite set of linear algebraic equations with the help of the reduction method. The authors give a numerical sample of calculating the non-stationary temperature field in the cylindrical body at the rate of cyclic impulse heating of its end surfaces. The dependence of different internal points of the cylindrical body on temperatures is tested.

References

[1] Karslou G., Eger D. Russ. ed.: Teploprovodnost’ tverdykh tel [Thermal Conductivity of Solids]. Moscow, Nauka Publ., 1964. 488 p.

[2] Lykov A.V. Teoriya teploprovodnosti [The Theory of Heat Conduction]. Moscow, Vyssh. shk. Publ., 1967. 600 p.

[3] Kartashov E.M. Analiticheskie metody v teorii teploprovod-nosti tverdykh tel [Analytical Methods in the Theory of Thermal Conductivity of Solids]. Moscow, Vyssh. shk. Publ., 2001. 550 p.

[4] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering Methods for Solving Problems of Heat Conduction]. Moscow, Energoatomizdat Publ., 1983.328 p.

[5] Dimitrienko Yu.I. Mekhanika kompozitsionnykh materialov pri vysokikh temperaturakh [Mechanics of Composite Materials at High Temperatures]. Moscow, Mashinostroenie Publ., 1997. 368 p.

[6] Zarubin V.S. The Optimum Thickness of the Cooled Walls under Local Heating. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. Univ., Mech. Eng.], 1970, no. 10, pp. 18-21 (in Russ.).

[7] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K. Modeling Internal Heat and Mass Transfer as Well as Thermal Stresses in Composite Shells under Local Heating. Mat. Model. [Math. Models Comput. Simul.], 2011, vol. 23, no. 9, pp. 14-32 (in Russ.).

[8] Attetkov A.V., Vlasova L.N., Volkov I.K. Features of Temperature Field Formation in the System under the Influence of an Oscillating Heat Flux. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2012, vol. 4, no. 12, pp. 553-558 (in Russ.).

[9] Grigor’yants A.G., Shiganov I.N., Misyurov A.I. Tekhnologicheskie protsessy lazernoy obrabotki [Technological Processes of Laser Treatment]. Moscow, MGTU im. N.E. Baumana Publ., 2006. 663 p.

[10] Grigor’yants A.G. Osnovy lazernoy obrabotki materialov [Principles of Laser Treatment of Materials]. Moscow, Mashinostroenie Publ., 1989. 300 p.

[11] Uglov A.A., Smurov I.Yu., Lashin A.M., Gus’kov A.G. Modelirovanie teplofizicheskikh protsessov impul’snogo lazernogo vozdeystviya na metally [Modeling Thermophysical Processes of Pulsed Laser Effect on Metals]. Moscow, Nauka Publ., 1991. 287 p.

[12] Kozlov V.P. Local Heating of a Semirestricted Body with Laser Source. Inzh.-Fiz. Zh. [J. Eng. Phys.], 1988, vol. 54, no. 3, pp. 484-493 (in Russ.).

[13] Malov Yu.I., Martinson L.K., Rogozhin V.M. Mathematical Modeling Heat and Mass Transfer during Plasma Spraying. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 1994, no. 3, pp. 3-16 (in Russ.).

[14] Chigireva O.Yu. Mathematical Simulation of Warming up of Two-Layer Cylinder by Moving Circular Heat Source. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 2, pp. 98-106 (in Russ.).

[15] Martinson L.K., Malov Yu.I. Differentsial’nye uravneniya matematicheskoy fiziki [Differential Equations of Mathematical Physics]. Moscow, MGTU im. N.E. Baumana Publ., 2002. 368 p.

[16] Malov Yu.I., Martinson L.K. Priblizhennye metody resheniya kraevykh zadach [Approximate Methods for Solving Boundary Value Problems]. Moscow, MVTU im. N.E. Baumana Publ., 1989. 26 p.

[17] Chigireva O.Yu. Mathematical modeling the process of heating the cylindrical surface by moving intense heat source. Inzh.-Fiz. Zh. [J. Eng. Phys.], 2006, vol. 79, no. 6, pp. 31-37 (in Russ.).

[18] Chernyshov A.D. Method of Fast Expansions for the Solution of Nonlinear Differential Equations. Zh. Vychisl. Mat. Mat. Fiz. [Comput. Math. Math. Phys.], 2014, vol. 54, no. 1, pp. 13-24 (in Russ.).

[19] Budak B.M., Fomin S.V. Kratnye integraly i ryady [Multiple Integrals and Series]. Moscow, Nauka Publ., 1965. 608 p.

[20] Kantorovich L.V., Akilov G.P. Funktsional’nyy analiz [Functional Analysis]. Moscow, Nauka Publ., 1984. 752 p.

[21] Kantorovich L.V, Krylov V.I. Priblizhennye metody vysshego analiza [Approximate Technique of Advanced Analysis]. Moscow, Fizmatgiz Publ., 1962. 708 p.

[22] Chigireva O.Yu. Calculation of Optimal Layer Thickness of Thermal Insulation in Multi-layer Cylindrical Block. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki, 2005, no. 1, pp. 94-101 (in Russ.).

[23] Matus P.P. On the Well-Posedness of Difference Schemes for a Semilinear Parabolic Equation with Generalized Solutions. Zh. Vychisl. Mat. Mat. Fiz. [Comput. Math. Math. Phys.], 2010, vol. 50, no. 12, pp. 2155-2175 (in Russ.).

[24] Chirkin VS. Teplofizicheskie svoystva materialov: Spravochnoe rukovodstvo [Thermophysical Properties of Materials: Reference Manual]. Moscow, Fizmatgiz Publ., 1959. 356 p.