Dynamic Temperature Stresses in Elastic Body with Curved Boundary
Authors: Savelyeva I.Yu. | Published: 26.01.2018 |
Published in issue: #1(76)/2018 | |
DOI: 10.18698/1812-3368-2018-1-38-46 | |
Category: Mathematics and Mechanics | Chapter: Mathematical Physics | |
Keywords: temperature stresses, curved boundary, elastic solid, mean curvature |
Calculation of temperature stresses under no steady behavior is known to be difficult due to the time-varying basic design parameters. On the basis of a one-dimensional design scheme, we analyzed the influence of the main loading parameters, material properties and the mean curvature of the surface on the temperature and stress distributions. In our research we obtained the analytic solutions for the temperature distribution and asymptotic solutions for small time values for stresses. Moreover, we analyzed the influence of the heat flux relaxation on the temperature and stress distributions in the elastic body under high-intensity surface heating, taking into account the mean curvature of the surface
References
[1] Zarubin V.S., Stankevich I.V. Raschet teplonapryazhennykh konstruktsiy [Calculation of heat-stressed constructions]. Moscow, Mashinostroenie Publ., 2005. 352 p.
[2] Zarubin V.S. Raschet i optimizatsiya termoizolyatsii [Calculation and optimization of thermal insulation]. Moscow, Energoatomizdat Publ., 1991. 192 p.
[3] Kuvyrkin G.N. Termomekhanika deformiruemogo tverdogo tela pri vysokointensivnom nagruzhenii [Thermomechanics of deformable solid body under high-intensity loading]. Moscow, Bauman MSTU Publ., 1993. 142 p.
[4] Gribanov V.F., Panichkin N.G. Svyazannye i dinamicheskie zadachi termouprugosti [Coupled and dynamics problems of thermal elasticity]. Moscow, Mashinostroenie Publ., 1984. 181 p.
[5] Golovin N.N., Kuvyrkin G.N. Problem of numerical modeling of the temperature and stress field in the structures of SFRE nozzle blocks. Journal of Engineering Physics and Thermophysics, 2000, vol. 73, iss. 1, pp. 145–154. DOI: 10.1007/BF02681689
[6] Zarubin V.S., Kuvyrkin G.N. Mathematical modeling of thermomechanical processes in aircraft structures. Journal of Engineering Physics and Thermophysics, 2000, vol. 73, iss. 1, pp. 138–144. DOI: 10.1007/BF02681688
[7] Zarubin V.S., Kuvyrkin G.N. Mathematical models of thermomechanics of a relaxing solid. Mechanics of Solids, 2012, vol. 47, iss. 2, pp. 252–260. DOI: 10.3103/S0025654412020124
[8] Zarubin V.S., Kuvyrkin G.N. Mathematical modeling of thermomechanical processes under intense thermal effect. High Temperature, 2003, vol. 41, iss. 2, pp. 257–265. DOI: 10.1023/A:1023390021091
[9] Kuvyrkin G.N., Saveleva I.Yu. Simulation of temperature fields in the solid body at surface heating. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2009, vol. 1, no. 9, pp. 375–380 (in Russ.).
[10] Golovin N.N., Kuvyrkin G.N., Mayskaya E.V. Mathematical simulation of nonstationary deforming of interacting heat-loaded structures. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2012, no. 4 (4) (in Russ.). DOI: 10.18698/2308-6033-2012-4-158 Available at: http://engjournal.ru/eng/catalog/mathmodel/hidden/158.html
[11] Lurye A.I. Teoriya uprugosti [Elasticity theory]. Moscow, Nauka Publ., 1970. 940 p.
[12] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of solid mechanics and electrodynamics]. Moscow, Bauman MSTU Publ., 2008. 512 p.
[13] Bateman H., Erdélyi A. Tables of integral transforms. New York, McGraw-Hill, 1954. 391 p.