|

Research of Porosity in a Sample with the Fluid-Saturated Closed Pores Exposed to External Load

Authors: Kharin N.V., Akifyev K.N., Statsenko E.O., Semenova E.V., Sachenkov O.A., Bolshakov P.V. Published: 31.07.2024
Published in issue: #3(114)/2024  
DOI:

 
Category: Mathematics and Mechanics | Chapter: Solid Mechanics  
Keywords: computer tomography, stress-strain state, porosity, experiment, closed pores, fluid-saturated pores

Abstract

Modern production capabilities are making it possible to create structures with irregular and heterogeneous structures. Specifics appear in such structures operation associated with alterations in their internal structure exposed to deformation. Such alterations include local destruction and changes in the main skeleton structure; and these effects negatively influence the physical and mechanical properties. Study objects were samples with the fluid-saturated pores. Fluid appeared in the closed pores due to the photo-polymer resin clogging during laser stereolithography. Samples were scanned using the X-ray computer tomograph without external loading and with different compressive longitudinal forces. Four samples with the same porosity were considered, but the pore geometries were different. The paper shows that porosity, volumetric deformation and relative porosity are acting nonlinearly depending on the external compressive force. An increase in porosity in loading was observed in all the samples. Thus, maximum increase in porosity for the ellipsoidal pore was 25 %, and for the spheroidal pore --- 50 %. The results indicate the pore geometry influence on the porosity exposed to a compressive load

The work was supported by the Russian Science Foundation (grant no. 23-21-00274)

Please cite this article in English as:

Kharin N.V., Akifyev K.N., Statsenko E.O., et al. Research of porosity in a sample with the fluid-saturated closed pores exposed to external load. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 3 (114), pp. 70--91 (in Russ.). EDN: SAQEVR

References

[1] Maslov L.B., Dmitryuk A.Yu., Zhmaylo M.A., et al. Study of the strength of a hip endoprosthesis made of polymeric material. Rossiyskiy zhurnal biomekhaniki, 2022, no. 4, pp. 19--33 (in Russ.). EDN: MFBXQC

[2] Maslov L.B., Dmitryuk A.Yu., Zhmaylo M.A., et al. Finite element analysis of the stress state of the hip joint endoprothesis while walking. Russ. J. Biomech., 2021, vol. 25, no. 4, pp. 357--374. DOI: https://doi.org/10.15593/RJBiomech/2021.4.07

[3] Saviour C.M., Gupta S. Design of a functionally graded porous uncemented acetabular component: influence of polar gradation. Int. J. Numer. Meth. Biomed. Eng., 2023, vol. 39, iss. 6, art. 3709. DOI: https://doi.org/10.1002/cnm.3709

[4] Bolshakov P., Raginov I., Egorov V., et al. Design and optimization lattice endoprosthesis for long bones: manufacturing and clinical experiment. Materials, 2020, vol. 13, iss. 5, art. 1185. DOI: https://doi.org/10.3390/ma13051185

[5] Sufiyarov V.Sh., Orlov A.V., Popovich A.A., et al. Designing a graded-material endoprosthesis and its structural characteristics modelling. Rossiyskiy zhurnal biomekhaniki, 2021, no. 1, pp. 64--77 (in Russ.). EDN: KZRRAT

[6] Li Q., Wu L., Hu L., et al. Axial compression performance of a bamboo-inspired porous lattice structure. Thin-Wall. Struct., 2022, vol. 180, art. 109803. DOI: https://doi.org/10.1016/j.tws.2022.109803

[7] Xu C., Li M., Huang J., et al. Efficient biscale design of semiregular porous structures with desired deformation behavior. Comput. Struct., 2017, vol. 182, pp. 284--295. DOI: https://doi.org/10.1016/j.compstruc.2016.12.006

[8] Bolshakov P., Kharin N., Kashapov R., et al. Structural design method for constructions: simulation, manufacturing and experiment. Materials, 2021, vol. 14, iss. 20, art. 6064. DOI: https://doi.org/10.3390/ma14206064

[9] Bahrami Babamiri B., Askari H., Hazeli K. Deformation mechanisms and post-yielding behavior of additively manufactured lattice structures. Mater. Des., 2020, vol. 188, art. 108443. DOI: https://doi.org/10.1016/j.matdes.2019.108443

[10] Maconachie T., Leary M., Lozanovski B., et al. SLM lattice structures: properties, performance, applications and challenges. Mater. Des., 2019, vol. 188, art. 108137. DOI: https://doi.org/10.1016/j.matdes.2019.108137

[11] Kharin N., Bolshakov P., Kuchumov A.G. Numerical and experimental study of a lattice structure for orthopedic applications. Materials, 2023, vol. 16, iss. 2, art. 744. DOI: https://doi.org/10.3390/ma16020744

[12] Zhang X., Zhang K., Zhang B., et al. Mechanical properties of additively-manufactured cellular ceramic structures: a comprehensive study. J. Adv. Ceram., 2022, vol. 11, no. 12, pp. 1918--1931. DOI: https://doi.org/10.1007/s40145-022-0656-5

[13] Yuan S., Chua C.K., Zhou K. 3D-printed mechanical metamaterials with high energy absorption. Adv. Mater. Technol., 2018, vol. 4, iss. 3, art. 1800419. DOI: https://doi.org/10.1002/admt.201800419

[14] Zhang R., Guo R. Voronoi cell finite element model to simulate crack propagation in porous materials. Theor. Appl. Fract. Mech., 2021, vol. 115, art. 103045. DOI: https://doi.org/10.1016/j.tafmec.2021.103045

[15] Takano N., Fukasawa K., Nishiyabu K. Structural strength prediction for porous titanium based on micro-stress concentration by micro-CT image-based multiscale simulation. Int. J. Mech. Sci., 2010, vol. 52, iss. 2, pp. 229--235. DOI: https://doi.org/10.1016/j.ijmecsci.2009.09.013

[16] Jiang Y., Shi K., Zhou L., et al. 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc. Bioact. Mater., 2023, vol. 20, pp. 528--538. DOI: https://doi.org/10.1016/j.bioactmat.2022.06.002

[17] Sandstrom C., Larsson F., Runesson K. Homogenization of coupled flow and deformation in a porous material. Comput. Methods Appl. Mech. Eng., 2016, vol. 308, pp. 535--551. DOI: https://doi.org/10.1016/j.cma.2016.05.021

[18] Zhu L., Li M., Xu W. Direct design to stress mapping for cellular structures. Vis. Inform., 2019, vol. 3, iss. 2, pp. 69--80. DOI: https://doi.org/10.1016/j.visinf.2019.07.002

[19] Feng C., Cui Z. A 3-D model for void evolution in viscous materials under large compressive deformation. Int. J. Plast., 2015, vol. 74, pp. 192--212. DOI: https://doi.org/10.1016/j.ijplas.2015.06.012

[20] Al-Munajjed A.A., Hien M., Kujat R., et al. Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. J. Mater. Sci.: Mater. Med., 2008, vol. 19, no. 8, pp. 2859--2864. DOI: https://doi.org/10.1007/s10856-008-3422-5

[21] Xin T., Liang B., Wang J., et al. Experimental study on the evolution trend of the pore structure and the permeability of coal under cyclic loading and unloading. ACS Omega, 2021, vol. 6, iss. 51, pp. 35830--35843. DOI: https://doi.org/10.1021/acsomega.1c06118

[22] Zhang M., Sun H., Song C., et al. Pores evolution of soft clay under loading/unloading process. Appl. Sci., 2020, vol. 10, iss. 23, art. 8468. DOI: https://doi.org/10.3390/app10238468

[23] Duan B., Shen T., Wang D. Effects of solid loading on pore structure and properties of porous FeAl intermetallics by gel casting. Powder Technol., 2019, vol. 344, pp. 169--176. DOI: https://doi.org/10.1016/j.powtec.2018.12.019

[24] Sun J., Dong Z., Zhu S., et al. Pore structure evolution of mudstone caprock under cyclic load-unload and its influence on breakthrough pressure. Front. Earth Sci., 2023, vol. 17, no. 3, pp. 691--700. DOI: https://doi.org/10.1007/s11707-022-1019-9

[25] Diederichs A.M., Thiel F., Lienert U., et al. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping. Procedia Struct. Integr., 2017, vol. 7, pp. 268--274. DOI: https://doi.org/10.1016/j.prostr.2017.11.088

[26] Baptista R., Guedes M. Porosity and pore design influence on fatigue behavior of 3D printed scaffolds for trabecular bone replacement. J. Mech. Behav. Biomed. Mater., 2021, vol. 117, art. 7104378. DOI: https://doi.org/10.1016/j.jmbbm.2021.104378

[27] Le V.-D., Pessard E., Morel F., et al. Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: the role of defects on scatter and statistical size effect. Int. J. Fatigue, 2020, vol. 140, art. 105811. DOI: https://doi.org/10.1016/j.ijfatigue.2020.105811

[28] Wang B., Sun L., Pan B. Mapping internal deformation fields in 3D printed porous structure with digital volume correlation. Polym. Test., 2019, vol. 78, art. 105945. DOI: https://doi.org/10.1016/j.polymertesting.2019.105945

[29] Akifyev K.N., Statsenko E.O., Smirnova V.V., et al. Method for studying the porosity of fluid phase samples by X-ray computed tomography under uniaxial compression. Vestnik PNIPU. Mekhanika [PNRPU Mechanics Bulletin], 2023, no. 2, pp. 11--21 (in Russ.). EDN: QXRPVW

[30] Sachenkov O.A., Bolshakov P.V., Gerasimov O.V., et al. Ustroystvo dlya opredeleniya struktury materiala ili obraztsov pri odnoosnom szhatii i sposob ego ispolzovaniya [Device for determining the structure of a material or samples under uniaxial compression and method for its use]. Patent RU 2755098. Appl. 12.02.2021, publ. 13.09.2021 (in Russ.).

[31] Razinkov E., Saveleva I. On the implementation of ALFA --- agglomerative late fusion algorithm for object detection. In: Kerautret B., Colom M., Lopresti D., Monasse P., Talbot H. (eds). Reproducible Research in Pattern Recognition. RRPR 2018. Lecture Notes in Computer Science, vol. 11455. Cham, Springer, 2019, pp. 98--103. DOI: https://doi.org/10.1007/978-3-030-23987-9_9

[32] Razinkov E., Saveleva I., Matas J. ALFA: agglomerative late fusion algorithm for object detection. ICPR, 2018, pp. 2594--2599. DOI: https://doi.org/10.1109/ICPR.2018.8545182

[33] Alison Noble J. Finding corners. Image Vis. Comput., 1988, vol. 6, iss. 2, pp. 121--128. DOI: https://doi.org/10.1016/0262-8856(88)90007-8

[34] Hafiz D.A., Bayumy A.B.Y., Sheta W.M., et al. Interest point detection in 3D point cloud data using 3D Sobel --- Harris operator. Intern. J. Pattern Recognit. Artif. Intell., 2015, vol. 29, no. 7, art. 1555014. DOI: https://doi.org/10.1142/S0218001415550149

[35] Sipiran I., Bustos B. Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput., 2011, vol. 27, no. 11, pp. 963--976. DOI: https://doi.org/10.1007/s00371-011-0610-y

[36] Kanwar S., Al-Ketan O., Vijayavenkataraman S. A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering. Mater. Des., 2022, vol. 220, art. 110857. DOI: https://doi.org/10.1016/j.matdes.2022.110857