Polinomial Zeros According to the Haar-Type System
Authors: Vlasova E.A. | Published: 24.05.2017 |
Published in issue: #3(72)/2017 | |
DOI: 10.18698/1812-3368-2017-3-4-16 | |
Category: Mathematics and Mechanics | Chapter: Substantial Analysis, Complex and Functional Analysis | |
Keywords: Generalized Haar system, polynomial, Lebesgue measure, zeros set |
We obtained an accurate estimate for the Lebesgue measure of the polynomial zeros set of arbitrarily large order with nonzero coefficients according to the generalized Haar system for the case of a bounded sequence of parameters defining a given system. Similar problems were investigated for the case of an unbounded sequence of parameters of the generalized Haar system. In the latter case it is shown that there is always a polynomial, whose Lebesgue measure of the polynomial zeros set has an arbitrarily small difference from one.
References
[1] Alexits G. Convergence problems of orthogonal series. New York, Pergamon Press, 1961.
[2] Kashin B.S., Sahakian A.A. Ortogonal’nye ryady [Orthogonal series]. Moscow, AFTS Publ., 1999. 560 p.
[3] Sakharov I.E., Makashov A.A., Kropotov A.N. Using Haar wavelets for image processing and splicing. Inzhenernyy zhurnal: nauka i innovatsii [Engineering journal: Science and Innovation], 2012, no. 11, pp. 44-50 (in Russ.). DOI: 18698/2308-6033-2012-11-465 Available at: http://engjournal.ru/eng/catalog/pribor/robot/465.html
[4] Mozharov G.P. Comparative analysis of adaptive wavelet-packages algorithms. VestH. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 1, pp. 75-88 (in Russ.). DOI: 10.18698/0236-3933-2016-1-75-88
[5] Gorshkov Yu.G. Research ramplex for frequency-time analysis of voice signal using the wavelet technology. VestH. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2011, no. 3, pp. 78-87 (in Russ.).
[6] Novikov I.Ya., Protasov V.Yu., Skopina M.A. Teoriya vspleskov [Theory of bursts]. Moscow, Fizmatlit Publ., 2006. 616 p.
[7] Syuzev V.V. Spectral analysis in Haar function basis. VestH. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2011, no. 2, pp. 48-67 (in Russ.).
[8] Zalmanzon L.A. Preobrazovaniya Fur’ye, Uolsha, Khaara i ikh primenenie v upravlenii, svyazi i drugikh oblastyakh [Fourier, Walsh, Haar transforms and their application in management, communications and other fields]. Moscow, Nauka Publ., 1989. 496 p.
[9] Vilenkin N.Ya. On a class of complete orthonormal systems. Izv. Akad. Nauk SSSR. Ser. Mat., 1947, vol. 11, no. 4, pp. 363-400.
[10] Kaczmarz S., Steinhaus H. Theorie der Orthogonalreinen. New York, Chelsea Publ., 1951.
[11] Golubov B.I., Rubinshteyn A.I. A class of convergence systems. Matem. sb. 1966, vol. 71, no. 1, pp. 96-115 (in Russ.). Available at: http://www.mathnet.ru/links/6c02b9104edb1b318fd76f5954de50dd/sm4253.pdf
[12] Golubov B.I. On a class of complete orthonornal systems. Sib. matem. jurn. [Siberian Mathematical Journal], 1968, vol. 9, no. 2, pp. 297-314 (in Russ.).
[13] Vlasova E.A. A certain class of orthogonal convergence systems. Mathematical Notes of the Academy of Sciences of the USSR, 1988, vol. 43, iss. 6, pp. 421-428. DOI: 10.1007/BF01158511 Available at: http://link.springer.com/article/10.1007%2FBF01158511
[14] Vlasova E.A. Convergence of series with respect to generalized Haar systems. Anal. math, 1987, vol. 13, no. 4, pp. 339-360.
[15] Vlasova E.A. Series in systems of Haar type. Izvestiya VUZ. Matematika [Soviet Mathematics], 1990, vol. 34, no. 9, pp. 1-13 (in Russ.). Available at: http://www.mathnet.ru/links/52d3db43a3143ea7443b4c3958fcda20/ivm5441.pdf
[16] Akishev G.A. On degrees of approximation of some classes by polynomials with respect to generalized Haar system. Sib. elektron. matem. izv. [Siberian Electronic Mathematical Reports], 2006, no. 3, pp. 92-105 (in Russ.). Available at: http://www.mathnet.ru/links/fb3bfbeefe9e5741bb2621ea1c55adeb/semr187.pdf
[17] Akishev G.A. Absolute convergence of Fourier series of superpositions of functions. Russian Mathematics, 2009, vol. 53, no. 1. DOI: 10.3103/S1066369X09110012 Available at: http://link.springer.com/article/10.3103%2FS1066369X09110012
[18] Volosivets S.S., Fadeev R.N. Vesovaya integriruemost’ summ ryadov po mul’tiplikativnym sistemam. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. In-formatika [Izvestiya of Saratov University. New Series. Series Mathematics. Mechanics. Informatics], 2014, vol. 14, no. 2, pp. 129-136 (in Russ.).
[19] Shcherbakov V.I. Dini - Lipschitz criterion on generalized Haar. Mater. 17-y mezhdunarod. Saratovskoy zimney shk., posv. 150-letiyu so dnya rozhdeniya V.A. Steklova [Proc. 17th Int. winter workshop dedicated to the 150th anniversary of birth of V.A. Steklov]. Saratov, SGU Publ., 2014, pp. 307-308 (in Russ.).
[20] Shcherbakov V.I. On Jordan criterion or its transformation in generalized Haar systems. Mater. 12-y mezhdunarod. Kazanskoy letney nauchnoy shkoly-konferentsii. T. 51 [Proc. 12th Int. Kazan’ summer school-conf. Vol. 51]. Kazan’, Kazan’ Mathematical Society Publ., Tatarstan Academy of Sciences Publ., 2015, pp. 493-496 (in Russ.).
[21] Shcherbakov V.I. Features of the pointwise Dini convergence criterion of Fourier series on Vilenkin systems and generalized Haar system on zero-dimensional groups. Mater. 18-y mezhdu-narod. Saratovskoy zimney shk. [Proc. 18th Int. Saratov winter workshop]. Saratov, Nauchnaya kniga Publ., 2016, pp. 341-345 (in Russ.).
[22] Shcherbakov V.I. Divergence of the Fourier series by generalized Haar systems at points of continuity of a function. Russian Mathematics, 2016, vol. 60, no. 1, pp. 42-59. DOI: 10.3103/S1066369X16010059 Available at: http://link.springer.com/article/10.3103%2FS1066369X16010059
[23] Ul’yanov P.L. On the uniqueness of series in a Haar system with monotone coefficients. Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1983, no. 6, pp. 63-73 (in Russ.).