Computational and Experimental Study of the Supersonic Turbulent Detached Flow and Local Heat Emission in a Flat Duct with a Sudden Expansion
Authors: Nosatov V.V., Semenyov P.A. | Published: 14.02.2014 |
Published in issue: #1(52)/2014 | |
DOI: | |
Category: Applied Mathematics and Methods of Mathematical Simulation | |
Keywords: gas-dynamics, heat transfer, supersonic flow, boundary layer, turbulence, separated flow, shock |
Results of numerical and experimental study of the supersonic separated flow and local heat transfer in a flat duct with a sudden one-side enlargement at the Mach number M ≈ 3 and the initial turbulent boundary layer before the flow detachment from the step are considered. The Reynolds-averaged Navier-Stokes equations are used which are added with the k-ω, k-ε, and Spalart-Allmaras turbulence models in different variants of computation. The computed fields of gas-dynamical parameters in the stepwise duct are presented. The computed and experimental pressure distributions on the wall and the heat transfer coefficient behind the step are compared. The spatial correlation of the obtained fields of velocity, surface pressure and friction, as well as the heat transfer coefficient in the region of initial and reattachment of the boundary layer is analyzed.
References
[1] Chang P.K. Separation of flow. Washington, Pergamon Press, 1970. (Russ. ed.: Chzhen P. Otryvnye techeniya. Moscow, Mir Publ., 1972-1973.
[2] Merzkirch W., Page R.H., Fletcher L.S. A survey of heat transfer in compressible separated and reattached flows. AIAA J., 1988, vol. 26, no. 2, pp. 144-150. doi: 10.2514/3.9865
[3] Kutateladze S.S., Leont’ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heat and mass transfer and friction in a turbulent boundary layer]. Moscow, Energoatomizdat Publ., 1985. 318 p.
[4] Isaev S.A., Lukichev V.Yu., Nosatov V.V., Sadovnikov G.S., Shchegolev N.L. Numerical modeling of heat and mass transfer in supersonic and hypersonic flows. Tr. 3 Vseross. nats. konf. po teploobmenu [Proc. 3rd All-Russ. Nat. Conf. on Heat Transfer]. Moscow, 20O2, pp. 151-154 (in Russ.).
[5] Nosatov V.V., Shchegolev N.L. Experimental study of heat transfer in a channel with a sudden expansion of the supersonic flow. Tez. dokl. 11 Vseross. mezhvuz. nauch.-tekhn. konf. "Gazoturbinnye i kombinirovannye ustanovki i dvigateli" [Proc. 11 All-Russ. Interuniv. Sci. Tech. Conf. "Gas-turbine and combined engines and motors"]. Moscow, 2000, p. 71 (in Russ.).
[6] Bedarev I.A., Fedorova N.N. Computation of gas-dynamic parameters and heat transfer in supersonic turbulent separated flows near backward-facing steps. J. Appl. Mech. Tech. Phys., 2001, vol. 42, no. 1, pp. 49-56. doi: 10.1023/A:1018800426418
[7] Epifanov V.M., Nosatov V.V., Shchegolev N.L. Eksperimental’noe opredelenie profilya skorosti i integral’nykh kharakteristik sverkhzvukovogo pogranichnogo sloya pnevmometricheskim metodom [Experimental determination of the velocity profile and integral characteristics of a supersonic boundary layer by a pneumometric method]. Moscow, MGTU im. N.E. Baumana Publ., 1996. 35 p.
[8] Abramovich G.N. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Ch. 1. Moscow, Nauka Publ., 1991. 600 p.
[9] Volchkov E.P. Pristennye gazovye zavesy [Wall gas curtains]. Novosibirsk, Nauka Publ., 1983. 238 p.