|

Temperature waves analysis in a cylinder subject to heat flow inertia

Authors: Supel, Karyshev A.K. Published: 17.08.2013
Published in issue: #2(49)/2013  
DOI:

 
Category: Applied Mathematics and Methods of Mathematical Simulation  
Keywords: hyperbolic thermal conductivity equation, cylinder, heat flow relaxation time, transient periodical conditions of heat exchange, temperature waves

The phenomenological Fourier hypothesis by which heat propagates in space at infinite velocity underlies classical theory of heat conduction. In fact heat propagation velocity is high, but finite. It can be left out of account in the majority of heat-conduction problems, but has a significant influence on the result of solution in certain cases. In such instances it is appropriate to use Maxwell-Cattaneo-Lykov theory taking into account heat flow inertia that results in hyperbolic thermal conductivity equation. There are a limited number of solutions of this equation for certain problems. In the work, the temperature field of an unbounded cylinder under transient periodical conditions of heat exchange with surroundings has been studied. The approximate analytical quasi-stationary solution of the hyperbolic thermal conductivity equation in the form of the partial sum of the trigonometric Fourier series is obtained. The temperature fields are computed and the heat flow relaxation time influence on the temperature peak-to-peak value of the cylinder is investigated.

References

[1] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in the theory of heat transfer in solids]. Moscow, Vysshaya shkola Publ., 2001. 550 p.

[2] Kudinov V.A., Kudinov I.V. A method for the exact analytical solution of the hyperbolic heat transfer equation by orthogonal methods. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. of the Samara State Tech. Univ. Ser. Phys. Math. Sci.], 2010, no. 5 (21), pp. 159–169 (in Russ.).

[3] Shashkov A.G., Bubnov V.A., Yanovskiy S.Yu. Volnovye yavleniya teploprovodnosti: Sistemno-strukturnyy podkhod [Wave heat transfer phenomena. Systematic and structural approach]. Moscow, Editorial URSS Publ., 2004. 296 p.

[4] Karyshev A.K., Supel’nyak M.I. Temperature field of a cylinder under periodic unsteady conditions of heat exchange with the environment. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr. [Herald of the Bauman Moscow State Tech. Univ. Ser. Mech. Eng.], 2011, no. 4, pp. 54–70 (in Russ.).

[5] Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Mathematical physics equations]. Moscow, Nauka Publ., 2004. 798 p.

[6] Tolstov G.P. Ryady Fur’e [Fourier series]. Moscow, Nauka Publ., 1980. 384 p.

[7] Kamke E. Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differentialgleichungen, Leipzig, Teubner Publ., 1959. 668 p. (Russ. ed.: Kamke E. Spravochnik po obyknovennym differentsial’nym uravneniyam. Moscow, Nauka Publ., 1971. 576 p.).

[8] Stepanov V.V. Kurs differentsial’nykh uravneniy [Course on differential equations]. Moscow, LKI, 2008. 472 p.

[9] Watson G.N. A Treatise on the Theory of Bessel Functions. New York, MacMillan, 1948. 689 p. (Russ. ed.: Vatson G.N. Teoriya besselevykh funktsiy. Chast’ I. Moscow, Inostrannaya Literatura Publ., 1949. 799 p.).

[10] Cooke R.G. Infinite matrices and sequence spaces. New York, Dover Publ., 1966. 347 p. (Russ. ed.: Kuk R. Beskonechnye matritsy i prostranstva posledovatel’nostey. Moscow, Fizmatlit Publ., 1960. 472 p.).

[11] Kantorovich L.V., Krylov V.I. Priblizhennye metody vysshego analiza [Approximate methods of mathematical analysis]. Moscow, Fizmatlit Publ., 1962. 708 p.

[12] Malov Yu.I., Martinson L.K., Pavlov K.B. The solution of some mixed boundary value problems of hydrodynamics in conducting media by separation of variables. Zh. Vychisl. Matem. i Matem. Fiz. [J. Comp. Math. and Math. Phys.], 1972. vol. 12, no. 3, pp. 627–638 (in Russ.).

[13] Chirkin V.S. Teplofizicheskie svoystva materialov yadernoy tekhniki [Thermophysical properties of materials for nuclear technology]. Moscow, Atomizdat Publ., 1968. 484 p.