|

Influence of an Arrangement of Combined Fibers on Thermal Conductivity of Unidirectional Fibrous Composite

Authors: Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Published: 14.09.2014
Published in issue: #4(55)/2014  
DOI:

 
Category: Applied Mathematics and Methods of Mathematical Simulation  
Keywords: unidirectional fibrous composite, combined fiber, tensor of the effective thermal conductivity

Fibers and fiber-like inclusions are fairly common reinforcing elements in structural materials. High-strength and high-modulus fibers reinforcement increases the mechanical and thermal properties of the composite. The effective value of the thermal conductivity of the composite depends on the arrangement and volume concentration of fibers. The dependences allowing us to estimate the effective thermal conductivity of the unidirectional transversely isotropic fibrous composite with the combined fibers (fiber and its core are made from different materials) are calculated. A case of the ordered arrangement of fibers in the plane perpendicular to their axis is considered provided that the representative structure of the composite element can be represented as a square cell with the fiber cross-section in the center of it. The presented calculated dependences can be used to predict the values of the components of the effective thermal conductivity of the unidirectional transversal isotropic fibrous composite with the combined fibers.

References

[1] Lubin G. Handbook of composites. New York, Van Nostrand Reinhold, 1982. 786 p. (Russ. ed.: Liubin Dzh. Spravochnik po kompozitsionnym materialam. V 2 t. T. 2. Moscow, Mashinostroenie Publ., vol. 2, 1988. 584 p.).

[2] Vasil’ev V.V., Protasov V.D., Bolotin V.V., Alfutov N.A., Beil’ A.I., Bunakov V.A., Dymkov I.A., Ermolenko A.F., Zhigun I.G., Zinov’ev P.A., Kintsis T.Ia., Kleimenov V.V., Kruklin’sh A.A., Kul’kov A.A., Manuilov V.F., Popov B.G., Portnov G.G., Sirotkin O.S., Skudra A.M., Solov’ev I.A., Tarnopol’skii Iu.M., Tsarakhov K.S. Kompozitsionnye materialy: Spravochnik [Composite Materials: A Guide]. Moscow, Mashinostroenie Publ., 1990. 512 p.

[3] Komkov M.A., Tarasov V.A. Tekhnologiia namotki kompozitnykh konstruktsii raket i sredstv porazheniia [Wound composite structures technology and missile weapons]. Moscow, MSTU im. N.E. Bauman Publ., 2011. 431 p.

[4] Kalinchev V.A., Yagodnikov D.A. Tekhnologiya proizvodstva raketnykh dvigateley tverdogo topliva [Production technology of solid-propellant rocket engine]. Moscow, MGTU im. N.E. Baumana Publ., 2011. 688 p.

[5] Brautman L., Kroc R., Sendetsky J., eds. Composite Materials. In 8 volums. Vol. 2. Mechanics of Composite Materials. N.Y, 1975. Brautman L., Krok R. Mekhanika kompozitsionnykh materialov. (Russ. Ed.: Brautman L., Krok R. Mekhanika kompozitsionnykh materialov. Pod red. Dzh. Sendetski; per. s angl. Moscow, Mir Publ., 1978. 564 p.).

[6] Dul’nev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov [The thermal conductivity of mixtures and composite materials]. Leningrad, Energiya Publ., 1974. 264 p.

[7] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [The theory of elasticity of micro-inhomogeneous media]. Moscow, Nauka Publ., 1977. 400 p.

[8] Christensen R.M. Mechanics of composite materials. Livermore, New York, Chichester, Brisbane, Toronto, John Wiley & Sons Inc., 1979. (Russ. ed.: Kristensen R. Vvedenie v mekhaniku kompozitov. Moscow, Nauka publ., 1982. 336 p.).

[9] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. The mixture models of the mechanics of composites. Part 1. Thermomechanics and thermoelasticity of a multicomponent mixture. Vestn. Mosk. Gos. Tekh. Univ. im.N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2009, no. 3, pp. 36-49 (in Russ).

[10] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. The effective thermal conductivity of composite with inclusions a prolate ellipsoids of rotation. Teplovye protsessy v tekhnike [Therm. process. in engineering], 2013, vol. 5, no. 6, pp. 276-282 (in Russ).

[11] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Thermal conductivity of composite reinforced with fibers. Izv. Vyssh. Uchebn. Zaved., Mashinostr [Proc. Univ., Mech. Eng.], 2013, no. 5, pp. 75-81 (in Russ.).

[12] Yankovskiy A.P. Numerical-analytical modeling of heat conduction in a spatially reinforced composites under intense heat impact. Teplovye protsessy v tekhnike [Therm. process. in engineering], 2011, vol. 3, no. 11, pp. 500-516 (in Russ).

[13] Chen Y.-M., Ting J.-M. Ultra high thermal conductivity polymer composites. Carbon. 2002, vol. 40, pp. 359-362.

[14] Lubin G. Handbook of composites. New York, Van Nostrand Reinhold, 1982. 786 p. (Russ. ed.: Liubin Dzh. Spravochnik po kompozitsionnym materialam. V 2 t. T. 1. Moscow, Mashinostroenie Publ., vol. 1, 1988. 488 p.).

[15] Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti [Engineering methods for solving problems of heat conduction]. Moscow, Energoatomizdat Publ., 1983. 329 p.

[16] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of mechanics and electrodynamics of continuous media]. Moscow, MGTU im. N.E. Baumana Publ., 2008. 512 p.

[17] Zarubin V.S., Kuvyrkin G.N. Two-sided estimates of the thermal resistance of an inhomogeneous solid body Teplofiz. Vys. Temp. [High Temp.], 2013, vol. 51, no. 4, pp. 578-585 (in Russ.).

[18] Wooster W.A. Tensors and group theory for the physical properties of crystals. Publisher: London, Oxford University Press, 1973. 354 p. (Russ. Ed.: Vuster U. Primenenie tenzorov i teorii grupp dlya opisaniya fizicheskikh svoystv kristallov; per. s angl. Moscow, Mir Publ., 1977. 384 p.).

[19] Gradshteyn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedeniy. [Tables of integrals, sums, series and products]. Moscow, Fizmatgiz Publ., 1963, 1100 p.

[20] Fetisov G.P., eds. Materialovedenie i tekhnologiya metallov [Materials science and technology of metals]. Moscow, Vysshaya Shkola Publ., 2001. 638 p.

[21] Chirkin V.S. Teplofizicheskie svoystva materialov yadernoy tekhniki [Thermophysical properties of materials for nuclear technology]. Moscow, Atomizdat Publ., 1968. 484 p.

[22] Grigor’ev I.S., Meylikhov B.Z. Fizicheskie velichiny: Spravochnik [Physical Quantities: A Handbook]. Moscow, Energoatomizdat Publ., 1991. 1232 p.