|

Fracture Model for Brittle Material Under the Thermal Loads

Authors: Galanin M.P., Lukin V.V., Rodin A.S., Semerikova M.A. Published: 03.12.2014
Published in issue: #6(57)/2014  
DOI:

 
Category: Applied Mathematics and Methods of Mathematical Simulation  
Keywords: mathematical simulation, thermoelasticity, brittle fracture, smeared cracks, nuclear fuel

Model of the formation and evolution of cracks in brittle materials was considered. Smeared crack model allowing to describe the material fracture in the framework of continuum mechanics assumptions has been used. Accounting of cracks leads to weakening of effective strength properties of the material. The model examined in a two-dimensional plane and axisymmetric approximations. Smeared crack approach is applicable to model the behavior of fuel pellets based on uranium dioxide. The calculation results are physically consistent.

References

[1] Feodos’ev V.I. Soprotivlenie materialov [The structural resistance]. Moscow, MGTU im. N.E. Baumana Publ., 1999. 592 p.

[2] Kachanov L.M. Osnovy mekhaniki razrusheniya [Fundamentals of fracture mechanics]. Moscow, Nauka Publ., 1974. 312 p.

[3] Besson J., Cailletaud G., Chaboche J.-L., Forest S., Bletry M. Non-linear mechanics of materials. Springer, 2010. 450 p.

[4] Lemaitre J. A course on damage mechanics. Springer, 1996. 228 p.

[5] Dahlblom O., Ottosen N.S. Smeared crack analysis of concrete using a nonlinear fracture model. Proc. "Fracture Mechanics of Concrete: Nordw Seminar Held at Division ofBuilding Materials". Sweden, Lund Institute of technology, November 6, 1986, pp. 31-46.

[6] Hillerborg A. Application of the fictitious crack model to different types of materials. Int. J. Fracture, 1991, no. 51, pp. 95-102.

[7] Frost Brian R.T. Nuclear fuel elements: design, fabrication, and performance. Pergamon Press, 1982. 275 p. (Russ. Ed.: Frost B. TVELy yadernykh reaktorov. Per. s angl., Reshetnikov F.G. Moscow, Energoatomizdat Publ., 1982. 248 p.).

[8] Marchal N., Campos C., Garnier C. Finite element simulation of Pellet-Cladding Interaction (PCI) in nuclear fuel rod. Computational Materials Science, 2009, no. 45, pp. 821-826.

[9] Semerikova M.A. Mathematical simulation of fracture of brittle material in the coupled problem for thermoelasticity. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki., Spetsvyp. "Mathematical simulation in the technique" [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., Spec. Issue "Mathematical Simulation in Technique"], 2012, pp. 187-196 (in Russ.).

[10] Semerikova M.A. Mathematical simulation of brittle material under the thermal loads. El. Zhur. "Molodezhnyy nauchno-tekhnicheskiy vestnik" MGTU im. N.E. Baumana [El. J. "Youth Sci. & Techn. Herald" of BMSTU], 2013, no. 3 (in Russ.). Available at: http://sntbul.bmstu.ru/doc/563884.html (accessed 05.05.2013).

[11] Galanin M.P., Gorbunov-Posadov M.M., Ermakov A.V., Lukin V.V., Rodin A.S., Shapovalov K.L. Arkhitektura programmnoy platformy soprovozhdeniya vychislitel’nogo eksperimenta Temetos [Architecture of the software environment for numerical experiments Themetos]. Moscow, Keldysh Inst. Appl. Math., preprint no. 99, IPM im. M.V. Keldysha Publ., 2013. 23 p. Available at: http://library.keldysh.ru/preprint.asp?id=2013-99 (accessed 18.04.2014).

[12] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli termomekhaniki [Mathematical models of thermomechanics]. Moscow, Fizmatlit Publ., 2002. 168 p.

[13] Bathe K.-J. Finite element procedures. Prentice-Hall, 1996. 1037 p.

[14] Zienkiewicz O. The finite element method in engineering science. London, McGraw-Hill, 1971. 521 p. (Russ. Ed.: Zenkevich O. Metod konechnykh elementov v tekhnike. Moscow, Mir Publ., 1975. 543 p.).

[15] Fuel Analysis and Licensing Code: FALCON MOD01. Vol. 1. Theoretical and numerical bases. Final Report of Electric Power Research Institute (EPRI). Palo Alto, USA, December 2004.

[16] Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti [Applied theory of plasticity and creep]. Moscow, Mashinostroenie Publ., 1975. 400 p.

[17] Galanin M.P., Lukin V.V., Rodin A.S., Semerikova M.A. Matematicheskoe mode-lirovanie razrusheniya khrupkogo materiala pod deystviem teplovykh nagruzok [Mathematical modeling of the brittle material fracture under the thermal loads]. Moscow, Keldysh Inst. Appl. Math., preprint no. 100, IPM im. M.V. Keldysha Publ., 2013. 36 p. Available at: http://library.keldysh.ru/preprint.asp?id=2013-100 (accessed 18.04.2014).

[18] SCDAP/RELAP5/MOD3.1 Code Manual. Vol. IV. MATPRO - A library of materials properties for light-water-reactor accident analysis. Idaho, 1993. 681 p.

[19] Timoshenko S.P., Goodier J.N. Theory of elasticity. 3rd Ed. Tokyo, McGraw-Hill, 1970. 567 p. (Russ. Ed.: Timoshenko S.P., Gud’er Dzh. Teoriya uprugosti. Moscow, Nauka Publ., 1975. 576 p.).