|

Problems of Precision of Cryogenic Space Telescope of the Millimetron Observatory

Authors: Sayapin S.N., Artemenko Yu.N., Myshonkova N.V. Published: 07.04.2014
Published in issue: #2(53)/2014  
DOI:

 
Category: Mechanics  
Keywords: cryogenic space telescope, Millimetron space observatory, intelligence active structures, parallel-kinematics mechanisms

The Millimetron observatory is generally described that is designed for operation under conditions of high vacuum and ultra-low temperatures on the remote working orbit in the vicinity of the Lagrange libration point L2 in the Sun-Earth system at a distance of 1.5 million km from the Earth. It is shown that the telescope due to its extension and low frequency of free oscillations is the gravitational and inertial system sensitive to impact of external and internal microdynamic perturbations. The problems of ensuring the high precision of the telescope exposed in its operation to the indicated perturbations, high vacuum and ultra-low temperatures are considered. It is determined that an accuracy of orientation and stabilization of the service module is lower by the order of magnitude than the required accuracy, while elastic oscillations of low-frequency large-size members of the telescope structure induced by external and internal microdynamic perturbations can lead to violation of the required accuracy. It is noted that remoteness of the observatory orbit at a great distance from the Earth does not allow the observatory systems and experiment plan to be controlled in real time. The analysis of the known methods and aids applied for solving similar problems is performed. An original concept of intelligence system of active vibroprotection and high-precision pointing of the Millimetron observatory telescope is presented that is aimed at fulfillment of the indicated tasks.

References

[1] Wild W., Kardashev N.S., Babakin N.G. et al. Millimetron - a large Russian-European submillimeter space observatory. Experimental Astronomy, 2009, vol. 23, no. 1, pp. 221-244. DOI: 10.1007/s10686-008-9097-62009

[2] Bronowicki A.-J. Vibration Isolator for Large Space Telescopes. J. Spacecraft & Rockets, 2006, Vol. 43, no. 1, pp. 45-53.

[3] Nakagawa T. SPICA and its instrumentation. Proc. 19th Int.. Symp. on Space Terahertz Technology Groningen, the Netherlands, April 28-30, 2008, pt. 1 (Or. Contrib.), pp. 20-26.

[4] Leskova N. Academician Nikolay Kardashev: ."The people should be able to dream". J. Nauka & Zhizn [Science & Life], 2013, no. 11, pp. 34-39 (in Russ.).

[5] Trankovsky S. Why you need a telescope in orbit. J. Nauka & Zhizn (Science & Life), 2013, no. 11, pp. 36-39, (in Russ.).

[6] Matveenko L.I., Kardashev N.S., Sholomitcky G.B. The radiointerferometer with large base. Izv. Vyssh. Uchebn. Zaved. [Proc. Univ., Physics], 1965, vol. 8, no. 4, p. 65-71 (in Russ.).

[7] Matveenko L.I. Radiointerferometer. Fizika kosmosa [Physic of Space. Small encyclopedia], Moscow, Soviet Encyclopedia Publ., 1986, pp. 547-551 (in Russ.).

[8] Arsentiev V.M., Gvamichava A.S., Danilov Yu.I. Space radio telescope KRT-10. Dokl. Akad. Nauk SSSR, Astr. [Proc. Acad. Sci. USSR, Astronomy], 1982, vol. 264, no. 3, pp. 588-591 (in Russ.).

[9] Arkhipov M.Yu., Vinogradov I.S., Kardashev N.S., Usyukin VI. "Radioastron" - the contribution to the project from collaboration between SM-1 department of the Bauman MSTU & Astro Space Center of the Lebedev Ph. Inst. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr., Spetsvyp. "Krupnogabaritnye transformiruemye kosmicheskie konstruktsii i materialy dlya perspektivnykh raketno-kosmicheskikh sistem" [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng., Spec. Issue "Large-sized reshaped space structures and materials for advanced rocket-and- space systems"], 2012, pp. 49-59 (in Russ.).

[10] Lebedev A.P, Polezhaev V.I. Mechanics of microgravity: microaccelerations and gravitational sensitivity of processes of mass transfer upon receipt of the materials in space. Usp. Mekhaniki [Sov. Mechanics-Usp.], 1990, vol. 13, no. 1, pp. 3-51 (in Russ.).

[11] Titov V.A., Vyuzhanin V.A., Dmitriev V.V. Formirovanie dinamicheskikh svoystv uprngikh kosmicheskikh apparatov Formation of dynamic properties of elastic space vehicles. Moscow, Mashinostroenie Publ., 1995. 304 p.

[12] Sayapin S.N., Sineov A.V., Trubnikov A.G. Problem of gravitational sensitivity of transformable antennas of space radio telescopes. Sb. trud. VII Ross. Simp. "Mekhanika nevesomosti. Itogi i perspektivy fundam. issledovaniy gravitatsionno-chuvstvitel’nykh sistem" [Proc. 7th Russ. Symp. "Mechanics of microgravity. Results and prospects of fundamental research of gravitational Sensitivity Systems"]. Moscow, April 11-14, 2000, IPM RAS Publ., 2001, pp. 463-474 (in Russ.).

[13] Sayapin S.N., Sineov A.V., Trubnikov A.G. Sposob podavleniya pomekh ot kolebaniy uprugoy konstruktsii kosmicheskoy transformiruemoy antenny v protsesse ekspluatatsii i ustroystvo dlya ego osushchestvleniya [Method of suppression of interference caused by vibrations of elastic structure of transformable space antenna in the course of operation and device for realtzation of this method]. Patent RF, no. 2161109, 2000.

[14] Sayapin S.N. Active Vibration Isolation and Pointing System for High-Precision Large Deployable Space Antennas. Sc. J. "FACTA UNIVERSITA-TIS", Ser "MECHANICAL ENGINEERING", Un. Nis, Yugoslavia, 2001, vol. 1, no. 8, pp. 935938.

[15] Murata Y., Saito H., Tsuboi M. The VSOP-2 (ASTRO-G) project. Proc. 9th Europ. VLBI Network Symp. on "The role of VLBI in the Golden Age for Radio Astronomy and EVN Users Meeting", Bologna, September 23-26, 2008.

[16] Defendini A., Vaillon L., Trouve F., Rouse Th., Sanctorum B., Griseri G. Technology predevelopment for active control of vibration & very high accuracy pointing systems. Proc. 4th ESA In. Conf. on "Spacecraft Guidance, Navigation and Control Systems", Noordwijk, 18-21 October, 1999, pp. 1-7.

[17] Vaillon L., Champetier C., Gullaud V., Alldridge J., Philippe C. Passive and active microvibration control for very high pointing accuracy space system. Proc. 3rd Int. Conf. on "Spacecraft Cuidance, Navigation and Control Systems", ESTEC, Noordwijk, 26-29 November, 1996, ESA SP-381, 1997, pp. 497-503.

[18] Sineov A.V. Sayapin S.N., Frolov K.V., Izrailovich M.Ya. Development of effective methods and devices for vibration isolation and high-precision pointing of high-precision large space structures. Otchetinst. mashinovedeniya IMASHRAN [Peportof Engineering Sc. Inst., Russ. Acad. Sci.]. Moscow, 2000, Inventory no. 02.2.00.105013 of All-Russian Sc.-Techn. & Inf. Center., 108 p. (in Russ., unpublished).

[19] Koski K. Focus Mechanism for Kepler Mission. Proc. 39th Aerospace Mechanisms Symp. NASA Marshall Sp. Fl. Cent., May 7-9, 2008, pp. 359-372.

[20] Sayapin S.N. Prospects and available application of parallel spatial mechanism in space technology. Problemy mashinostroeniya i nadezhnosti mashin [J. Problems of Eng. Sc. & Mach. Reliability], 2001, no. 1, pp. 17-26 (in Russ.).

[21] Sayapin S.N. Analiz i sintez raskryvaemykh na orbite pretsizionnykh krupnogabaritnykh mekhanizmov i konstruktsiy kosmicheskikh radioteleskopov lepestkovogo tipa. Diss. dokt. tekhn. nauk [Analysis and synthesis of high-precision large mechanisms and structures for unfolding in orbit space radio telescopes petal type. Dr. tech. sci. diss.]. Moscow, IMASH RAS Publ., 2003. 446 p.

[22] Sayapin S.N., Kokushkin V.V. Sposob podavleniya pomekh ot kolebaniy uprugoy konstruktsii kosmicheskoy transformiruemoy antenny v protsesse ekspluatatsii i ustroystvo dlya ego osushchestvleniya Method of suppression of interference caused by vibrations of elastic structure of transformable space antenna in the course of operation and device for realization of this method. Patent RF, no. 2323136, 2008.

[23] Sayapin S.N., Sineov A.V. Lineynyy privod [Linear drive]. Patent RF, no. 2373611, 2009.

[24] Sayapin S.N., Sineov A.V. Adaptivnyy mobil’nyy prostranstvennyy robot-manipulyator i sposob organizatsii dvizheniy i kontrolya fiziko-mekhanicheskikh svoystv i geometricheskoy formy kontaktiruemoy poverkhnosti i traektorii peremeshcheniya s ego pomoshch’yu [Adaptive mobile 3D manipulator robot and method of organizing displacements and control over physical mechanical properties, geometrical shape of contact surface and displacement trajectory hereby]. Patent RF, no. 2424893, 2011.

[25] Sayapin S.N. Dodekapod as modern stage of development of spatial parallel robots. Problemy mashinostroeniya i nadezhnosti mashin [J. Problems of Eng. Sc. & Mach. Reliability], 2012, no. 6, pp. 31-45 (in Russ.).

[26] Merlet J.-P. Parallel Robots. 2nd Ed. Dordrecht, The Netherlands, Sringer, 2006, ch. 2.

[27] Stewart D. A platform with six degrees of freedom. Proc. Inst. Eng., 1965-66, vol. 180, no. 15, pt. 1, pp. 371-386.

[28] Baier H., Reindl M. Adaptive structures and mechatronic components for vibration and shape control of satellite payloads Proc. 10th Europ. Space Mechanisms and Tribology Symp., San Sebastian, 24-26 September 2003, ESA SP-524, Noordwijk, ESA Publ. Division, 2003, pp. 391-396.

[29] Quakernak H., Sivan R. Linear optimal control systems. Publisher: Wiley-Interscience, 1972. 608 p. (Russ. Ed.: Kvakernaak Kh., Sivan R. Lineynye optimal’nye sistemy upravleniya. Moscow, Mir Publ., 1977. 650 p.).

[30] Sigeru Omatu, Marzuki B. Khalid, Rubiyah Yusof. Neuro-Control and its Applications. Springer-Verlag London Limited, 1996. 252 p. (Russ. Ed.: Neyroupravlenie i ego prilozheniya. Kn. 2. Moscow, IPRGR Publ., 2000. 272 p.).

[31] Frolov K.V., Sayapin S.N., Siniov A.V., Galushkin A.I., Yakemenko G.V. Fizicheskaya model’ prostranstvennoy sistemy aktivnoy vibroizolyatsii i navedeniya [Physical model of spatial system active виброизоляции and pointing]. Patent RF, no. 2224295, 2001.