The form of the free liquid surface in equilibrium with its wetting film
Authors: Romanov A.S., Semikolenov A.V. | Published: 16.02.2016 |
Published in issue: #1(64)/2016 | |
DOI: 10.18698/1812-3368-2016-1-122-133 | |
Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma | |
Keywords: partially wetting liquid, thin film, surface tension, disjoining pressure, wetting angle |
The paper analyzes the free surface form of partially wetting liquid with small thickness taking into account some additional chemical potential (disjoining pressure) for liquid particles. The equilibrium of bulk phase of a liquid layer with a thin wetting film is possible according to the developed theory.
References
[1] Myshkis A.D., ed., Babskiy V.G., Zhukov M.Yu., Kopachevskiy N.D., Slobozhanin L.A., Tyuptsov A.D. Metody resheniya zadach gidromekhaniki dlya usloviy nevesomosti [Methods for solving problems in fluid mechanics for the conditions of weightlessness]. Kiev, Naukova dumka Publ., 1992. 592 p.
[2] Pukhnachev V.V., Solonnikov V.A. On the question of dynamic contact angle. Prikl. Mat. Mekh. [J. Appl. Math. Mech.], 1982, vol. 46, no. 6, pp. 961-971 (in Russ.).
[3] Deryagin B.V., Churaev N.V. Smachivayushchie plenki [Wetting films]. Moscow, Nauka Publ., 1984. 160 p.
[4] Deryagin B.V., Churaev N.V., Muler V.M. Poverkhnostnye sily [Surface forces]. Moscow, Nauka Publ., 1985. 399 p.
[5] Romanov A.S. Method of hydrodynamic description of the spreading of a partially wetting liquid over a flat solid surface. Colloid Journal, 1990, vol. 52, no. 1, pp. 72-78.
[6] Romanov A.S., Semikolenov A.V. Depressurized capillary filling in the asymptotic theory of wetting. Jelektr. nauchno-tekh. izd. "Inzhenernyy zhurnal: nauka i innovacii" [El. Sc.-Tech. Publ. "Eng. J.: Science and Innovation"], 2013, iss. 4. Available at: http://engjournal.ru/catalog/machin/rocket/699.html
[7] De Gennes P.G. Wetting: Statics and Dynamics. Reviews of Modern Physics, 1985, vol. 57, pp. 827-863. DOI: 10.1103/RevModPhys.57.827
[8] Deryagin B.V., Churaev N.V., Ovcharenko F.D. et al. Voda v dispersnykh sistemakh [Water in disperse systems]. Moscow, Khimiya Publ., 1989. 288 p.
[9] Miller C.A., Rukenshtein E. The Origin of Flow during Wetting of Solids. J. Col. Interface Sci., 1974, vol. 48, no. 3, pp. 368-373.
[10] Del Cerro M.C.G., Jameson G. Theory for equilibrium contact angle between a gas, a liquid and solid. J. Chem. Soc. Faraday Trans. I, 1976, vol. 72, pp. 883-895.
[11] Romanov A.S., Semikolenov A.V. A simulation of the hydrodynamics of the disintegration of a thin film of partially wetting liquid. Computational Mathematics and Mathematical Physics, 1995, vol. 35, no. 5, pp. 643-647.
[12] Romanov A.S., Semikolenov A.V. Simulation of spreading hydrodynamics for a droplet of an incompletely wetting liquid under a horizontal force. Computational Mathematics and Mathematical Physics, 1999, vol. 39, no. 7, pp. 1163-1167.
[13] Boryan Radoev, Klaus W. Sttickelhuber, Roumen Tsekov, Philippe Letocart. Wetting film dynamics and stability. Col. Interface Sci. Ser. 3, 2007, pp. 151-172.
[14] Bing Dai, L., Leal Gary, Redondo Antonio. Disjoining pressure for nonuniform thin films. Phys. Rev. E, 2o08, vol. 78, p. 061602.
[15] Aliev I.N., Yurchenko S.O. Nonlinear waves spreading over the nonviscous conductive liquid surface in the electric field. Izv. Akad. Nauk, Mekh. Zhidk. Gaza [Fluid Dyn.], 2009, no. 5, pp. 137-148 (in Russ.).
[16] Aliev I.N., Yurchenko S.O. Perturbation transition of the charged interface of non-miscible nonviscous liquids in the clearance between two electrodes. Izv. Akad. Nauk, Mekh. Zhidk. Gaza [Fluid Dyn.], 2010, no. 5, pp. 156-166 (in Russ.).
[17] Saramago B. Thin liquid wetting films. Current Opinion in Colloid & Interface Science, 2010, vol. 15, no. 5, pp. 330-340.
[18] Ren W., Hu D., E W. Continuum models for the contact line problem. Physics of Fluids, 2010, vol. 22, no. 10, pp. 102103-102119.
[19] Ajoy Patra, Dipankar Bandyopadhyay, Gaurav Tomar, Ashutosh Sharma, Gautam Biswas. Instability and dewetting of ultrathin solid viscoelastic films on homogeneous and heterogeneous substrates. Journal of Chemical Physics, 2011, vol. 134, no. 6, pp. 064705-064711.
[20] Boinovich L., Emelyanko A. Wetting and surface forces. Adv. Colloid Interface Sci., 2011, vol. 165, pp. 60-69.
[21] Tsekov R., Toshev B.V. Capillary pressure of van der Waals liquid nanodrops. Colloid Journal, 2012, vol. 74, no. 2, pp. 266-268.
[22] Colosqui C.E., Kavousanakis M.E., Papathanasiou A.G., Kevrekidis I.G. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2013, vol. 87, no. 1, p. 013302.
[23] Nikolov A., Wasan D. Wetting-dewetting films: the role of structural forces. Advances in Colloid and Interface Science, 2014, vol. 206, pp. 207-221.
[24] Boinovich L., Emelyanko A. The prediction of wettability of curved surfaces on the basis of the isotherms of the disjoining pressure. Col. Surf. A: Physicochem. Eng. Aspects, 2011, vol. 383, pp. 10-16.
[25] Popescu M.N., Oshanin G., Dietrich S., Cazabat A.-M. Precursor films in wetting phenomena. J. Phys.: Condens. Matter., 2012, vol. 24, p. 243102.
[26] Moulton D.E., Lega J. Effect of disjoining pressure in a thin film equation with nonuniform forcing. European J. of Applied Math., 2013, vol. 24, pp. 887-920.
[27] Snoeijer J.H., Andreotti B. Moving Contact Lines: Scales, Regimes, and Dynamical Transitions. Annu. Rev. Fluid Mech., 2013, vol. 45, pp. 269-292.
[28] David N. Sibley, Andreas Nold, Nikos Savva, Serafim Kalliadasis. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading. J. of Engineering Math., 2014, August.
[29] Kaustav Chaudhury, Palash V. Acharya, Suman Chakraborty. Influence of disjoining pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical capillaries. Phys. Rev. E, 2014, vol. 89, p. 053002.
[30] Bazarov I.P. Termodinamika [Thermodynamics]. St. Petersburg, Lan’ Publ., 2010. 377 p.
[31] Ruckenstein E., Dunn C.S. Slip velocity during Wetting of Solids. J. Col. Interface Sci. 1977, vol. 59, no. 1, pp. 135-138.