|

Study of Vortex Noise of Rotating Blades

Authors: Moshkov P.A. Published: 26.04.2020
Published in issue: #2(89)/2020  
DOI: 10.18698/1812-3368-2020-2-85-98

 
Category: Physics | Chapter: Acoustics  
Keywords: vortex noise, rotational noise, dipole source, acoustic measurements, aeroacoustics, propeller noise

The paper gives a brief overview of propeller noise generation mechanisms. The vortex component of the propeller noise is considered in detail. The results of the study of the vortex noise of rotating rods in open areas are presented. The spectral, integral and spatial characteristics of the acoustic field of the rotating rods are obtained. We established that the audibility of rotating rods considered is determined by radiation in the frequency range 250--1250 Hz. We summarized the results of the studies regarding the effect of the flow around the blade profile, characterized by the Reynolds number, on the vortex noise intensity. Findings of research show that the exponent of the dependence of the vortex sound intensity on the characteristic velocity around the blade profile in various ranges of the Reynolds number can vary significantly. When changing the value of lg Re in the range from 1.8 to 5, the final dependence of growth rate exponent first falls from 6 to 3, remains equal to 3 in the range of lg Re from 2.65 to 3.2, and then again increases to 6 for lg Re in the range from 3.4 to 3.7, and with an even larger increase, the exponent increases from 7 to 8 and above (to 11) to lg Re = 4.5. At higher Reynolds numbers, (over 106) corresponding to self-similar modes of flow around the blades of light propeller aircraft, the exponent is 5. Based on the study, we recommend using one of the well-known trailing edge noise models for calculating the vortex noise of propellers at the sketch design stage. The paper also introduces the main methods formulated for reducing the intensity of the vortex sound of rotating blades

References

[1] Moshkov P., Ostrikov N., Samokhin V., et al. Study of Ptero-G0 UAV noise with level flight conditions. 25th AIAA/CEAS Aeroacoustics Conf., AIAA Paper, 2019, no. 2019-2514. DOI: https://doi.org/10.2514/6.2019-2514

[2] Moshkov P.A., Samokhin V.F., Yakovlev A.A. Selection of an audibility criterion for propeller driven unmanned aerial vehicle. Russ. Aeronaut., 2018, vol. 61, iss. 2, pp. 149--155. DOI: https://doi.org/10.3103/S1068799818020010

[3] Moshkov P.A. Classification of community noise source by light propeller aircrafts. Nauchno-tekhnicheskiy vestnik Povolzh’ya [Scientific and Technical Volga Region Bulletin], 2015, no. 4, pp. 101--106 (in Russ.).

[4] Gutin L.Ya. About the sound field of the rotating propeller. ZhTF, 1936, vol. 6, no. 5, pp. 899--909 (in Russ.).

[5] Yudin E.Ya. About the vortex noise of rotating blades. ZhTF, 1944, vol. 14, no. 9, pp. 561--567 (in Russ.).

[6] Nepomnyashchiy E.Ya. The results of the study of propeller noise. UFN, 1945, vol. 27, no. 1, pp. 72--95 (in Russ.). DOI: https://doi.org/10.3367/UFNr.0027.194501e.0072

[7] Kopiev V.F., Zaitsev M.Yu., Chernyshev S.A. Sound radiation from a free vortex ring and a ring crossing an obstacle. 4th AIAA/CEAS Aeroacoustics Conf., AIAA Paper, 1998, no. 1998-2371. DOI: https://doi.org/10.2514/6.1998-2371

[8] Kopiev V.F., Zaitsev M.Yu., Karavosov R.K. Experimental investigation of azimuthal structure of dipole noise for rigid cylinder inserted in turbulent jets. 10th AIAA/CEAS Aeroacoustics Conf., AIAA paper, 2004, no. 2004-2927. DOI: https://doi.org/10.2514/6.2004-2927

[9] Lyamshev L.M. About the Aeolian tones. Akusticheskiy zhurnal, 1962, vol. 8, no. 1, pp. 91--98 (in Russ.).

[10] Lyamshev L.M. Sound scattering by elastic cylinders. Akusticheskiy zhurnal, 1959, vol. 5, no. 1, pp. 58--63 (in Russ.).

[11] Etkin V., Korbacher G.K., Keefe N.T. Acoustic radiation from a stationary cylinder in a fluid stream (Aeolian tones). J. Acoust. Soc. Amer., 1957, vol. 29, iss. 1, pp. 30--36. DOI: https://doi.org/10.1121/1.1908673

[12] Gerrard J.H. An experimental investigation of the oscillation lift and drag of a circular cylinder shedding turbulent vortices. J. Fluid Mech., 1961, vol. 11, iss. 2, pp. 244--256. DOI: https://doi.org/10.1017/S0022112061000494

[13] Ostrikov N.N. Sound radiation by distributed quadrupole sources near rigid bodies. Akusticheskiy zhurnal, 2012, vol. 58, no. 4, pp. 525--534 (in Russ.).

[14] Bazhenova L.A. Effect of external actions on the characteristics of vortex sound. Akusticheskiy zhurnal, 2012, vol. 58, no. 4, pp. 412--418 (in Russ.).

[15] Bazhenova L.A., Semenov A.G. Nature of the source of vortex sound flowing around a cylindrical profile. Akusticheskiy zhurnal, 2014, vol. 60, no. 6, pp. 645--655 (in Russ.).

[16] Ning Z., Wlezien R.W., Hu H. An experimental study on small UAV propellers with serrated trailing edges. 47th AIAA Fluid Dynamics Conf., AIAA Paper, 2017, no. 2017-3813. DOI: https://doi.org/10.2514/6.2017-3813

[17] Kazhan V.G., Moshkov P.A., Samokhin V.F. Ambient background noise under acoustic tests of aircrafts at the local aerodrome. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2015, no. 7 (in Russ.). DOI: https://doi.org/10.7463/0715.0782827

[18] Bazhenova L.A., Semenov A.G. On the influence of the Reynolds number on the intensity of vortex sound flowing around a cylindrical profile. Akusticheskiy zhurnal, 2013, vol. 59, no. 5, pp. 586–595 (in Russ.).

[19] Moshkov P.A. Prognozirovanie i snizhenie shuma na mestnosti legkikh vintovykh samoletov: Avtoref. dis. … kand. tekh. nauk [Prediction and reduction of community noise of light propeller aircraft. Cand. Sc. (Eng.). Dis. Abstract]. Moscow, MAI Publ., 2015 (in Russ.).

[20] Kopyev V.F., Titarev V.A., Belyaev I.V. Development of a methodology for propeller noise calculation on high-performance computer. Uchenye zapiski TsAGI [TsAGI Scientific Notes], 2014, vol. 45, no. 2, pp. 78--106 (in Russ.).

[21] Abalakin I.V., Anikin V.A., Bakhvalov P.A., et al. Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor. Fluid. Dyn., 2016, vol. 51, iss. 3, pp. 419--433. DOI: https://doi.org/10.1134/S0015462816030145

[22] Moshkov P.A., Samokhin V.F. Integral model of noise of an engine-propeller power plant. J. Eng. Phys. Thermophy., 2018, vol. 91, iss. 2, pp. 332--338. DOI: https://doi.org/10.1007/s10891-018-1753-8

[23] Moshkov P., Samokhin V., Yakovlev A. Engine-propeller power plant aircraft community noise reduction key methods. J. Eng. Applied Sci., 2017, vol. 12, no. s9 SI, pp. 8601--8606. DOI: 10.36478/jeasci.2017.8601.8606

[24] Moshkov P.A. About the direction of acoustic radiation of propeller power plant. Vestnik UGATU, 2017, vol. 21, no. 1 (75), pp. 118--127 (in Russ.).

[25] Leslie A., Wong K.C., Auld D. Broadband noise reduction on a mini-UAV propeller. 14th AIAA/CEAS Aeroacoustics Conf., AIAA Paper, 2008, no. 2008-3069. DOI: https://doi.org/10.2514/6.2008-3069

[26] Kholodov P., Moreau S. Optimization of serrations for broadband trailing-edge noise reduction using an analytical model. 25th AIAA/CEAS Aeroacoustics Conf., AIAA Paper, 2019, no. 2019-2655. DOI: https://doi.org/10.2514/6.2019-2655

[27] Wang Y., Tang D.F., Zhao K., et al. Experimental study on noise reduction using brush-serrated trailing edges. 25th AIAA/CEAS Aeroacoustics Conf., AIAA Paper, 2019, no. 2019-2623. DOI: https://doi.org/10.2514/6.2019-2623

[28] Teruna C., Manegar F. A., Avallone F., et al. Numerical analysis of metal-foam application for trailing edge noise reduction. 25th AIAA/CEAS Aeroacoustics Conf., AIAA Paper, 2019, no. 2019-2650. DOI: https://doi.org/10.2514/6.2019-2650