Surface Characteristics of Alkali Metals with the Discrete Lattice and Friedel Oscillations of the Electron Density
Authors: Glushkov V.L., Erkovich O.S. | Published: 26.07.2017 |
Published in issue: #4(73)/2017 | |
DOI: 10.18698/1812-3368-2017-4-75-89 | |
Category: Physics | Chapter: Condensed Matter Physics | |
Keywords: density functional method, electron density, discrete crystal lattice, work function, Friedel oscillations |
The study makes an attempt to describe the effect of the crystal lattice on the surface characteristics of alkali metals in the framework of the density functional method. In the first approximation the real potential of the crystal lattice has been replaced by the potential of a homogeneous positive background (the jellium model). We calculated the difference between the discrete-ions potential and the potential of jellium in the framework of the perturbation theory. To calculate the impact of electron-ion interaction on the energy characteristics of the surface, the real potentials of ions were approximated by Ashcroft pseudopotential. The electron density in the inhomogeneous electron gas near the surface was approximated by trial distribution functions which take into account Friedel oscillations and lattice effects. Furthermore, we carried out self-consistent calculation of the surface energy taking into account the gradient expansion for the kinetic energy. In this paper, we defined surface characteristics, such as the work function and the potential barrier height and constructed effective potentials for alkaly metals. All the characteristics of the metal surface were calculated within the density functional method.
References
[1] Kvaal S., Helgaker T. Ground-state densities from the Rayleigh - Ritz variation principle and from density-functional theory. J. Chem. Phys., 2015, vol. 143, no. 18. DOI: 10.1063/1.4934797 Available at: http://aip.scitation.org/doi/10.1063/1.4934797
[2] Burke K. Perspective on density functional theory. J. Chem. Phys., 2012, vol. 136, no. 15. DOI: 10.1063/1.4704546 Available at: http://aip.scitation.org/doi/10.1063/1.4704546
[3] Kryachko E.S., Ludena E.V. Density functional theory: Foundation reviewed. Phys. Rep. - Sect. Phys. Lett., 2014, vol. 544, no. 2, pp. 123-239.
[4] Glushkov V.L., Erkovich O.S. Method of many-particle density functionals for description of two-component system. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 1, pp. 33-39 (in Russ.).
[5] Erkovich O.S. Application of the multi-particle density functional approach to the properties description of the electron gas of the metal surface with consideration of the periodic structure of metal. Inzhenernyy zhurnal: Nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 8 (in Russ.). DOI: 10.18698/2308-6033-2013-8-864 Available at: http://engjournal.ru/catalog/fundamentals/physics/864.html
[6] Saravanan R., Rani M.P. Metal and alloy bonding: An experimental analysis. Charge density in metals and alloys. London, Springer, 2012. 151 p.
[7] Suryanarayana C. Experimental techniques in materials and mechanics. CRC Press, Taylor & Francis Group, 2011. 430 p.
[8] Stalke D. Meaningful structural descriptors from charge density. Chem. Eur. J., 2011, vol. 17, no. 34, pp. 9264-9278. DOI: 10.1002/chem.201100615 Available at: http://onlinelibrary.wiley.com/doi/10.1002/chem.201100615/full
[9] Glushkov V.L., Erkovich O.S. Energy response of alcaline metals surfaces taking into account Friedel oscillation of electron density. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki, 2014, no. 4, pp. 9-18 (in Russ.).
[10] Partenskiy M.B. Self-consistent electron theory of a metallic surface. Sov. Phys. Usp., 1979, vol. 22, no. 5, pp. 330-351. DOI: 10.1070/PU1979v022n05ABEH005498 Available at: http://iopscience.iop.org/article/10.1070/PU1979v022n05ABEH005498/meta
[11] Smith J.R. Self-consistent theory of electron work functions and surface potential characteristics for selected metals. Phys. Rev., 1969, vol. 181, no. 2, pp. 522-529. DOI: 10.1103/PhysRev.181.522 Available at: https://journals.aps.org/pr/abstract/10.1103/PhysRev.181.522
[12] Vakilov A.N., Mamonova M.V., Matveev V.V., Prudnikov V.V. Teoreticheskie modeli i metody v fizike poverkhnosti [Theoretical models and methods in surface physics]. Omsk, OmSU Publ., 2005. 212 p.
[13] Kiejna A., Wojciechowski K.F. Metal surface electron physics. Oxford, Alden Press, 1996. 303 p.
[14] Zhao Y., Truhlar D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res, 2008, vol. 41, no. 2, pp. 157-167. DOI: 10.1021/ar700111a Available at: http://pubs.acs.org/doi/abs/10.1021/ar700111a
[15] Jacob C.R., Neugebauer J. Subsystem density-functional theory. WIREs: Computational Molecular Science, 2014, vol. 4, no. 4, pp. 325-326. DOI: 10.1002/wcms.1175 Available at: http://onlinelibrary.wiley.com/doi/10.1002/wcms.1175/full
[16] Lang N.D., Kohn W. Theory of metal surfaces: Charge density and surface energy. Phys. Rev. B., 1970, vol. l, no. 12, pp. 4555-4568. DOI: 10.1103/PhysRevB.1.4555 Available at: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.1.4555
[17] Giustino F. Materials modelling using density functional theory: Properties and predictions. Oxford University Press, 2014. 303 p.
[18] Sholl D., Steckel J.A. Density functional theory: A practical introduction. Wiley, 2009. 252 p.
[19] Cohen A.J., Mori-Sanchez P., Yang W.T. Challenges for density functional theory. Chem. Rev, 2012, vol. 112, no. 1, pp. 289-320. DOI: 10.1021/cr200107z Available at: http://pubs.acs.org/doi/abs/10.1021/cr200107z
[20] Pevarati R., Truhlar D.G. M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys. Chem. Lett, 2012, vol. 3, no. 1, pp. 117-124. DOI: 10.1021/jz201525m Available at: http://pubs.acs.org/doi/abs/10.1021/jz201525m
[21] Lang N.D., Kohn W. Theory of metal surfaces: Work function. Phys. Rev. B., 1971, vol. 3, no. 4, pp. 1215-1223. DOI: 10.1103/PhysRevB.3.1215 Available at: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.3.1215
[22] Cramer C.J., Truhlar D.G. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys., 2009, vol. 11, no. 46, pp. 10757-10816. DOI: 10.1039/b907148b
[23] Matveev A.V. Generalized model of the surface segregation with inclusion of dielectric properties of the medium: Alkali metals and alloys. Vestnik Omskogo universiteta [Herald of Omsk University], 2013, no. 4, pp. 91-101 (in Russ.).
[24] Konig T., Simon G.H., Rust H.P., Heyde M. Work function measurements of thin oxide films on metals-MgO on Ag(001). J. Phys. Chem. C., 2009, vol. 113, no. 26, pp. 11301-11305. DOI: 10.1021/jp901226q Available at: http://pubs.acs.org/doi/abs/10.1021/jp901226q
[25] Schimka L., Gaudoin R., Klimes J., Marsman M., Kresse G. Lattice constants and cohesive energies of alkali, alkaline-earth, and transition metals: Random phase approximation and density functional theory results. Phys. Rev. B., 2013, vol. 87, no. 21, pp. 214102-1-214102-8. DOI: 10.1103/PhysRevB.87.214102 Available at: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.214102