|

Rotational Brownian Motion of a Spherical Body Taking into Account the Capture of Medium Particles

Authors: Morozov A.N., Skripkin A.V. Published: 19.12.2013
Published in issue: #4(51)/2013  
DOI:

 
Category: Physics  
Keywords: rotational Brownian motion, non-Markov process, viscous medium

The rotational motion of a spherical particle is considered which is caused by the presence of the fluctuating force moment induced by random variations in the momentum that is transferred by particles of the viscous medium to the Brownian particle under study. The fact that the Brownian particle captures the surrounding particles ofthe medium is taken into account during the study. It is shown that in case of large radii of the particle, the appropriate fluctuations of its angular speed relate to the class ofnon-Markov random processes. Statistical characteristics offluctuations in angular speed and angular acceleration of the Brownian particle including their characteristic functions and spectral densities are determined.

References

[1] Klimontovich Yu.L. Statisticheskaya fizika [Statistical physics]. Moscow, Nauka Publ., 1982. 608 p.

[2] Pugachev V.S., Sinitsyn I.N. Stokhasticheskie differentsial’nye sistemy [Stochastic differential systems]. Moscow, Nauka Publ., 1990. 632 p.

[3] Valiev K.A., Ivanov E.N. The rotational Brownian motion. Usp. Fiz. Nauk [Prog. Phys. Sci.], 1973, vol. 109, pp. 31-64 (in Russ.).

[4] Morozov A.N., Skripkin A.V. Spherical particle Brownian motion in viscous medium as non-Markovian random process. Phys. Lett. A., 2011, vol. 375, pp. 4113-4115.

[5] Morozov A.N., Skripkin A.V. Heat distribution around the cylindrical surface as a non-Markovian random process. Inzh.-Fiz. Zh. [J. Eng. Phys.], 2011, vol. 84, no. 6, pp. 1121-1127 (in Russ.).

[6] Morozov A.N., Skripkin A.V. The description of evaporation of a spherical fluid particle as a non-Markovian random process using stochastic integral equations. Izv. Vyssh. Uchebn. Zaved., Fizika. [Proc. Univ., Physics], 2010, no. 11, pp. 55-64 (in Russ.).

[7] Landau L.D., Lifshits E.M. Gidrodinamika [Hydrodynamics]. Moscow, Nauka Publ., 1986. 736 p.

[8] Morozov A.N., Skripkin A.V. Application of the Volterra equation of the second kind for the description of the viscous friction and thermal conductivity. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2006, no. 3, pp. 62-71 (in Russ.).

[9] Morozov A.N. Neobratimye protsessy i brounovskoe dvizhenie [Irreversible processes and Brownian motion]. Moscow, MGTU im.N.E. Baumana Publ., 1997. 332 p.

[10] Volterra V. Teoriya funktsionalov, integral’nykh i integrodifferentsial’nykh uravneniy [Functional theory, integral and integro-differential equations]. Moscow, Nauka Publ., 1982. 304 p.

[11] Morozov A.N. A method for describing non-Markovian processes using a linear integral transform. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2004, no. 3, pp. 47-56 (in Russ.).