|

Spatial Localization of Thermal Perturbations in Nonlinear Process of Heat Conduction

Authors: Martinson L.K., Chigiryova O.Yu. Published: 19.12.2013
Published in issue: #4(51)/2013  
DOI:

 
Category: Physics  
Keywords: boundary problem of nonlinear heat conduction, quasi-linear parabolic-type equation, effect of spatial localization of thermal perturbations

A one-dimensional boundary problem for a quasi-linear parabolic-type equation is considered. The problem describes the thermal perturbation propagation in a planar layer filled with the medium with volume heat absorption, whose specific power presents a power function of temperature. A difference scheme is used for finding a numerical solution to the problem. Results of calculations of temperature fields in the layer at different moments of time with the certain values of the problem parameters are given. Using theoretical inferences and data of performed numerical calculations, the nonlinear effect of spatial localization of thermal perturbations is established when thermal perturbations from the heated surface penetrate the medium only to a finite depth.

References

[1] Martinson L.K., Malov Yu.I. Differentsial’nye uravneniya matematicheskoy fiziki [Differential equations of mathematical physics]. Moscow, MGTU im. N.E. Baumana Publ., 2002. 368 p.

[2] Martinson L.K. The study of the mathematical model of the nonlinear heat conduction in media with volume absorption (in: Samarskiy A.A., Kurdyumov S.P., Galaktionov V.A. Matematicheskoe modelirovanie. Protsessy v nelineynykh sredakh [Mathematical modeling. Processes in nonlinear media]. Moscow, Nauka Publ., 1986. 308 p.), pp. 279-309 (in Russ.).

[3] Samarskiy A.A., Galaktionov V.A., Kurdyumov S.P., Mikhaylov A.P. Rezhimy s obostreniem v zadachakh dlya kvazilineynykh parabolicheskikh uravneniy [Sharpening regimes in problems for quasi-linear parabolic equations]. Moscow, Nauka Publ., 1987. 480 p.

[4] Bakhvalov N.S., Zhidkov N.P., Kobel’kov G.M. Chislennye metody [Numerical methods]. Moscow, Laboratoriya Bazovykh Znaniy Publ., 2000. 624 p.

[5] Amosov A.A., Dubinskiy Yu.A., Kopchenova N.V. Vychislitel’nye metody dlya inzhenerov [Computational methods for engineers]. Moscow, Vysshaya Shkola Publ., 1994. 544 p.

[6] Matus P.P. Well-posedness of difference schemes for semilinear parabolic equations with weak solutions. J. Comput. Math. Math. Phys., 2010, vol. 50, no. 12, pp. 20442063. Статья поступила в редакцию 20.03.2013