|

Investigation of Stability of the Magic, Near-Magic and Deformed Atomic Nuclei

Authors: Okunev V.S. Published: 19.12.2013
Published in issue: #4(51)/2013  
DOI:

 
Category: Physics  
Keywords: stability of atomic nuclei, magic nuclei, deformed nuclei, nuclear shells, stability triangles, half-life

The regularities of change in physical properties of atomic nuclei are revealed which are repetitive for groups of nuclides that make up the so-called triangles of stability (in the coordinates of "number of neutrons-number of protons"). If the regularities of change in chemical properties of elements are determined by Mendeleev's periodic law, the patterns of change in nuclear and physical properties of the nuclides are determined by triangles of stability. The necessary and sufficient conditions for the stability of nuclei are defined. The sufficient conditions for stability of the nuclide in relation to electric-nuclear interaction is the zero or maximum value of intrinsic electric quadrupole moment and the optimum ratio of numbers of neutrons and protons in the nucleus. It is shown that strongly deformed nuclei exhibit the properties of doubly magic nuclei, and the stability of nuclides can be explained without introducing the additional magic numbers. The role of nuclear shell occupancy in the stabilization of atomic nuclei is greatly exaggerated. Occupancies of different shells make different contributions to the stabilization of nuclei.

References

[1] Yadernaya fizika v Internete. Proekt kafedry obshchey yadernoy fiziki MGU [Nuclear physics on the Internet. Project of General Nuclear Physics Department of Moscow State University]. Available at: http://nuclphys.sinp.msu.ru/enc/e189.htm (accessed:17.12.2012).

[2] Okunev V.S. Study of stabilization effects and the influence of proton congestion on nuclear-physical properties of heavy nuclides. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 4, pp. 81-98 (in Russ.).

[3] Okunev V.S. On fission of light isotopes of heavy nuclei with an even number of neutrons. Tr. 6 Vseross. Konf. "Neobratimye protsessy v prirode i tekhnike". Ch. 1 [Proc. 6 All-Russ. Conf. "Irreversible processes in nature and technology". Vol. 1.], 2011, pp. 29-33 (in Russ.).

[4] Okunev V.S. The fission of heavy nuclei congested with protons. Nauch. Sess. NIYaUMIFI-2012. Annot. dokl. T. 1. "Innovatsionnye yadernye tekhnologii. Vysokie tekhnologii v meditsine" [Proc. Sci. Sess. MIFI 2012. Vol. 1. "Innovative nuclear technology. High technology in medicine"]. Moscow, NIYaU MIFI Publ., 2012, p. 58 (in Russ.).

[5] Okunev V.S. On the possible displacement of the center of the stability area formed by the 126th element. Nauch. Sess. NIYaU MIFI-2012. Annot. dokl. T. 1. "Innovatsionnye yadernye tekhnologii. Vysokie tekhnologii v meditsine" [Proc. Sci. Sess. MIFI 2012. Vol. 1. "Innovative nuclear technology. High technology in medicine"]. Moscow, NIYaU MIFI Publ., 2012, p. 63 (in Russ.).

[6] Okunev V.S. On the stability areas of transaktinoids. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2012, no. 4, pp. 13-32 (in Russ.).

[7] The JEFF Nuclear Data Library. Available at: http://www.oecd-nea.org/dbdata/jeff/ (accessed: 17.12.2012).

[8] IAEA Nuclear Data Services. Available at: http://www.nds.iaea.org (accessed:17.12.2012).

[9] Okunev V.S. Solonin V.I. Osnovy prikladnoy yadernoy fiziki i vvedenie v fiziku yadernykh reaktorov [Fundamentals of applied nuclear physics and introduction to the physics of nuclear reactors]. Moscow, MGTU im.N.E. Baumana Publ., 2010. 462 p.

[10] Mukhin K.N. Eksperimental’naya yadernaya fizika. Kn. 1. [Experimental nuclear physics. Vol. 1]. Moscow, Energoatomizdat Publ., 1993. 315 p.

[11] Lenta.ru. Rambler Media Group. Available at: http://lenta.ru/news/2010/05/27/magic/ (accessed: 07.12.2012).

[12] Dvorak J., Bruchle W., Chelnokov M., Dressler R., Diillmann Ch.E., Eberhardt K., Gorshkov V., Jager E., Kriicken R., Kuznetsov A., Nagame Y., Nebel F., Novackova Z., Qin Z., Schadel M., Schausten B., Schimpf E., Semchenkov A., Thorle P., Turler A., Wegrzecki M., Wierczinski B., Yakushev A., Yeremin A. Doubly magic nucleus 200Hs162. Phys. Rev. Lett., 2006, vol. 97, no. 24, 4 p.

[13] Pauling L. Changes in the structure of nuclei between the numbers 50 and 82 as indicated by a rotating-cluster analysis of the energy values of the first 2+ excided states of isotopes of cadmium, tin, and tellurium. Proc. Nat. Acad. Sci. USA., 1981, vol. 78.

[14] Lucas J.C., Lucas Jr. C.W. A Physical Model for Atoms and Nucleus. Part 1. Found. Sci., 2002, no. 5 (1), p. 1.

[15] Rydin R.A. A new approach to finding magic numbers for heavy and superheavy elements. Ann. Nucl. Energy, 2011, no. 38, pp. 238-242.

[16] Rydin R.A. New magic numbers in the continent of isotopes. Ann. Nucl. Energy, 2011, no. 38, pp. 2356-2358.

[17] Lucas Jr. C.W. A classical electrodynamic theory of the nucleus. Galilean Electrodyn., 1996, no. 7, p. 1.

[18] Lucas Jr. C.W., Rydin R.A. Electrodynamics model of the nucleus. Nucl. Sci. Eng., 2009, no. 161, pp. 255-256.

[19] Eisenberg J.M., Greiner W. Microscopic theory of the nucleus. North-Holland, 1976. 519 p. (Russ. ed.: Ayzenberg M., Grayner V. Mikroskopicheskaya teoriya yadra. Moscow, Atomizdat Publ., 1976. 488 p.).

[20] Sliv L., Strikman M.I., Frankfurt L.L. The problems of the microscopic nuclear theory and quantum chromodynamics. Usp. Fiz. Nauk [Sov. Phys.-Usp.], 1976, vol. 145, no. 4, pp. 553-592 (in Russ.).

[21] Gupta M. The superheavy elements. Available at: http://www.scitopics.com (accessed: 13 April 2010).