The Baikal Experiment Regarding the Observations of Leading Nonlocal Correlations of Large-Scale Processes
Authors: Korotaev S.M., Budnev N.M., Serdyuk V.O., Gorokhov Yu.V., Kiktenko E.O., Panfilov A.I. | Published: 14.02.2014 |
Published in issue: #1(52)/2014 | |
DOI: | |
Category: Physics | |
Keywords: quantum causality, macroscopic entanglement, nonlocal correlations, time, forecast |
The macroscopic quantum entanglement is the manifestation of nonlocality, the consistent theory of which has been undeveloped yet. The heuristic consideration of the problem leads to the conclusion that the leading nonlocal correlations are present in dissipative random processes, which have been really observed in the previous experiments. In 2012, a new experiment began at the Baikal Deep-Water Neutrino Observatory. Two nonlocal-correlation detectors, measuring spontaneous variations of potential difference of weakly polarized electrode pairs, were installed at depths of 52 and 1216 m; there can be no classical correlations between them. The data processing has revealed a correlation between the signals of the bottom and top detectors and the 4200 km distant laboratory-detector located in Troitsk. The detectors respond nonlocally to the external (heliogeophysical) processes; the signal correlation, determined by the causal analysis is directed downwards: from the detector on the earth’s surface to the detector near the Baikal floor. However this correlation obeys the weak causality principle: the bottom detector responds earlier than the top one, and the top detector reacts earlier than the surface one. The leading correlation of the detector signal with the solar and hydrodynamic activity is found; the possibility of forecasting them is demonstrated.
References
[1] Cramer J.G. Generalized absorber theory and Einstein-Podolsky-Rosen paradox. Phys. Rev D. 1980, vol. 22, pp. 362-376.
[2] Laforest M., Baugh J., Laflamme R. Time-reversal formalism applied to bipartite entanglement: theoretical and experimental exploration. Phys. Rev. A, vol. 73. P. 032323.
[3] Lloyd S., Maccone L., Garcia-Patron R., Giovannetti V., Shikano Y., Pirandola S., Rozema L.A., Darabi A., Soudagar Y, Shalm L.K., Steinberg A.M. Closed timelike curves via post-selection: theory and experimental demonstration. Phys. Rev. Lett., 2011, vol. 106. P. 040403.
[4] Ma X.-S., Zotter S., Kofler J., Ursin R., Jennewien T., Brukner I., Zeilinger A. Experimental delayed-choice entanglement swapping. Nature Physics, 2012, vol. 8, pp. 479-485.
[5] Megidish E., Halevy A., Shacham T., Dvir T., Dovrat L., Eisenberg H.S. Entanglement Between Photons that have Never Coexist. Phys. Rev. Lett., 2013, vol. 110. P. 210403.
[6] Plenio M.B., Huelga S.F., Beige A., Knight P.L. Entangling two qubits by dissipation. Phys. Rev. A., 1999, vol. 59, pp. 2468-2475.
[7] Basharov A.M. // ZhETF [J. Exp. Theor. Phys.], 2002, vol. 59, no. 6, pp. 1249-1260 (in Russ.).
[8] Plenio M.B., Huelga S.F. Entangled light from white noise. Phys. Rev. Lett., 2002, vol. 88, p. 197901.
[9] Kim M.S., Lee J., Ahn D., Knight P.L. Entanglement induced by a single-mode heat environment. Phys. Rev. A., 2002, vol. 65. P. 040101.
[10] Braun D. Creation of Entanglement by Interaction with a Common Heat Bath. Phys. Rev. Lett., 2002, vol. 89. P. 277901.
[11] Jakobczyk L. Entangling two qubits by dissipation. J. Phys. A., 2002, vol. 35. P. 63836392.
[12] Benatti F., Floreanini R., Piani M. Environment induced entanglement in Markovian dissipative dynamics. Phys. Rev. Lett., 2003, vol. 91. P. 070402.
[13] Choi T., Lee H.J. Quantum entanglement induced by dissipation. Phys. Rev. A, 2007, vol. 76. P. 012308.
[14] Kozyrev N.A., Nasonov V.V. Problemy issledovaniya Vselennoy [Problems of research universe], 1978, no. 7, pp. 168-179 (in Russ.).
[15] Kozyrev N.A., Nasonov V.V. Problemy issledovaniya Vselennoy [Problems of research universe], 1980, no. 9, pp. 76-84 (in Russ.).
[16] Cramer J.G. The transactional interpretation of quantum mechanics. Rev. Mod. Phys., vol. 58, pp. 647-688.
[17] Korotaev S.M., Morozov A.N., Serdyuk V.O., Gorohov J.V., Machinin V.A. Experimental study of macroscopic nonlocality of large-scale geomagnetic dissipative Processes. NeuroQuantology, 2005, vol. 3, pp. 275-294.
[18] Korotaev S.M. Causality and Reversibility in Irreversible Time. Scientific Research Publishing, Inc., USA, 2011. 130 p.
[19] Korotaev S.M., Serdyuk V.O. The forecast of fluctuating large-scale natural processes and macroscopic correlations effect. Int. J. of Computing Anticipatory Systems, 2008, vol. 20, pp. 31-46.
[20] Korotaev S.M., Serdyuk V.O., Sorokin M.O., Abramov J.M. Geophysical manifestation of interaction of the processes through the active properties of time. Phys. Chem. Earth A, 1999, vol. 24, pp. 735-740.
[21] Korotaev S.M., Serdyuk V.O., Sorokin M.O. Macroscopic manifestation of nonlocality in the geomagnetic and solar-ionospheric processes. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy], 2000, vol. 40, no. 3. pp. 56-64 (in Russ.).
[22] Korotaev S.M., Morozov A.N., Serdyuk V.O., Sorokin M.O. Izv. Vyssh. Uchebn. Zaved., Fizika. [Proc. Univ., Physics], 2002, no. 5, pp. 3-14.
[23] Korotaev S.M. Experimental study of advanced correlation of some geophysical and astrophysical processes. Int. J. of Computing Anticipatory Systems, 2006, vol. 17, pp. 61-76.
[24] Hoyle F., Narlikar J.V. Cosmology and action-at-a-distance electrodynamics. Rev. Mod. Phys., 1995, vol. 67, no. 1, pp. 113-156.
[25] Korotaev S.M., Serdyuk V.O., Nalivaiko V.I., Novysh A.V., Gaidash S.P., Gorokhov Yu.V., Pulinets S.A., Kanonidi Kh.D. Experimental estimation of macroscopic nonlocality effect in solar and geomagnetic activity. Phys. of Wave Phenomena, 2003, vol. 11, no. 1, pp. 46-55.
[26] Korotaev S.M., Serdyuk V.O., Gorohov J.V., Pulinets S.A., Machinin V.A. Forecasting affect of macroscopic nonlocality. Frontier Perspectives, 2004, vol. 13, no. 1, pp. 41-45.
[27] Korotaev S.M., Morozov A.N., Serdyuk V.O., Gorokhov Yu.V, Filippov B.P., Machinin V.A. Izv. Vyssh. Uchebn. Zaved., Fizika. [Proc. Univ., Physics], 2007, no. 4, pp. 26-33 (in Russ.).
[28] Korotaev S.M., Serdyuk V.O., Gorokhov Yu.V. Forecast of geomagnetic and solar activity based on nonlocal correlations. Dokl. Akad. Nauk [Proc. Acad. Sci.], 2007, vol. 415, no. 6, pp. 814-817 (in Russ.).
[29] Korotaev S.M., Serdyuk V.O., Gorohov J.V. Forecast of solar and geomagnetic activity on the macroscopic nonlocality effect. Hadronic Journal., 2007, vol. 30, no. 1, pp. 39-56.
[30] Korotaev S.M., Kiktenko E.O. Causal analysis of the quantum states. Search for Fundamental Theory. AIP Proceedings, 2010, vol. 1316, pp. 295-331.
[31] Kiktenko E.O., Korotaev S.M. Causal analysis of asymmetric entangled states. Physics Letters A., 2012, vol. 376, pp. 820-823.
[32] Korotaev S.M., Kiktenko E.O. Causality and decoherence in the asymmetric states. Physica Scripta, 2012, vol. 85. P. 055006.
[33] Korotaev S.M. On the possibility of a causal analysis of geophysical processes. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy], 1992, vol. 32, no. 1, pp. 27-33 (in Russ.).
[34] Korotaev S.M., Shabelyansky S.V., Serdyuk V.O. Generalized causal ana- Lease and its application to the study of the electromagnetic field in the sea. Izv. RAN, Fiz. [Proc. Russ. Acad. Sci., Phys.], 1992, no. 6, pp. 77-66 (in Russ.).
[35] Khachai O.A., Korotaev S.M., Trojans A.K. The results of application the causal analysis for borehole data processing of seismic acoustic and electromagnetic emission. Volcanology and Seismology [Volcanology and Seismology], 1992, No. 3, pp. 92-100.
[36] Korotaev S.M., Khachay O.A., Shabelyanskiy S.V. Causal analysis process horizontal diffusion of information of the electromagnetic field in the ocean. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy], 1993, vol. 33, no. 2, pp. 128-133 (in Russ.).
[37] Korotaev S.M. The role of the various definitions of entropy in causal analysis geophysical processes and their application to electromagnetic induction in sea currents. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy], 1995, vol. 35, no. 3, pp. 116-125 (in Russ.).
[38] Lean J.L., Brueckner G.E. Intermediate-term solar periodicities: 100-500 days. Astrophys. J., 1989, vol. 337, pp. 568-578.
[39] Korotaev S.M., Budnev N.M., Serdyuk V.O., Gorohov J.V., Kiktenko E.O., Zurbanov V.L., Mirgazov R.R., Buzin V.B., Novysh A.V. Preliminary results of the Baikal experiment on observations of macroscopic nonlocal correlations in reverse time. Physical Interpretations of Relativity Theory, N.Y., Reuters, 2013, pp. 198-208.