Polariton Curves in Amorphous Quartz Doped with Ions of Erbium Er3+

Authors: Gorelik V.S., Burdanova M.G. Published: 07.04.2014
Published in issue: #2(53)/2014  

Category: Physics  
Keywords: amorphous quartz, erbium, absorption spectra, paraphotons, dispersion relations, luminescence, polaritons, resonance, laser

The Lorentz model is used for describing dispersion properties of electromagnetic waves in amorphous quartz doped with rare-earth metal ions. The form of Maxwell equations is established for dielectric media with spatially ordered impurity centers. The absorption spectra of erbium ions Er3+ introduced in amorphous quartz are analyzed. The dispersion dependences of polaritonic waves in the impurity amorphous quartz are determined on the basis of the model of interaction between electromagnetic waves and resonance electronic states of Er3+ ions. The features of polariton curves and parameters of unitary polaritons, for which the refraction index is unity, are found. The conditions are analyzed for optimizing the pumping of laser generation levels for laser system, constructed on the base of amorphous quartz, doped with Er3+ ions. It is shown that fiber-optic laser with Er3+ ions can be used for implementation of photons-to-scalar bosons conversion. The example of possible experimental scheme for observation of photon-paraphoton conversion is given.


[1] Coffinet J.P., De Martini F. Coherent Excitation of Polaritons in Gallium Phosphide. Phys. Rev. Lett., 1969, vol. 22, pp. 60-64.

[2] Heisenberg W., Eule H. Folgerungen aus der DiracschenTheorie des Positrons. Phys., 1936, vol. 98, pp. 714-716.

[3] Henry C.H., Garrett C.G.B. Theory of parametric gain near a lattice resonance. Phys. Rev., 1968, vol. 171, pp. 1058-1064.

[4] Kee H.H., Lees G.P., Newson T.P. Narrow linewidth CW and Q-switched erbium-doped fibre loop laser. Electr. Lett., 1998, vol. 34, pp. 1318-1319.

[5] Kee H.H., Lees G.P., Newson T.P. 1.65m Raman based distributed temperature sensor. Electr. Lett., 1999, vol. 35, pp. 1869-1871.

[6] Aliev G.N., Golubev V.G., Dudkin A.A., Kurdyukov D.A., Medvedev A.V., Pevtsov A.B., Sorokin L.M., Hutchison J.L. Structural, photonic-crystal and luminescent properties of the opal-erbium composite. Fizika tverdogo tela [Physics of the Solid State, pp. 2224-2231. DOI: 10.1134/1.1529915], 2002, vol. 44, no. 12, pp. 2125-2131 (in Russ.).

[7] Mears R.J., Reekie L., Jancie I.M., Payne D.N. High-gain rare-earth doped fiber amplifier at 1.54 mm. Proc. Opt. Fiber Communication Conf. Opt. Soc. Am. Techn. Digest Series, Washington, 1987, vol. 3, p. 167.

[8] Landau L.D., Lifshits E.M. Elektrodinamika sploshnykh sred. Moscow, Fizmatlit Publ., 2005. 656 p. (Eng. Ed.: Landau L.D., Lifshitz E.M. Course of theoretical physics. Vol. 8. Electrodynamics of Continuous Media. Oxford [Oxfordshire], New York, Pergamon, 1984. 460 p.).

[9] Litvinov O.S. Optika [Optics]. Moscow, Nauka Publ., 1976. 926 p.

[10] Venger E.F., Goncharenko A.V., Dmitruk M.L. Optika malykh chastits i dispersnykh sred [Optics of small particles and dispersed media]. Kiev, Naukova Dumka Publ., 1999. 348 p.

[11] Gorelik V.S., Filatov V.V. Optical properties of photonic crystals filled with rare earth elements. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2012, no. 5, pp. 104-111 (in Russ.).

[12] Stewart D.S., Kato A.D. Analysis of rare earth mixtures by a recording spectrophotometer. Analytical Chemistry, 1958, vol. 30, no. 2, pp. 164-172.

[13] Komissarova L.N. Soedineniya redkozemel’nykh elementov [Compounds of rare earth elements]. Moscow, Nauka Publ., 1986. 368 p.

[14] Malkin B.Z., Kaplyanskii A.A., Macfarlane R.M., eds. Spectroscopy of solids containing rare-earth ions. Chap.2. Crystal field and electron-phonon interaction in rare earth ionic paramagnets. North-Holland, Amsterdam, Elsevier Science, 1987, pp. 13-49.

[15] Grubb S.G., Di Giovanni D.J., Simpson J.R., Cheung W.Y., Sanders S., Weltch D.F., Rockney B. Ultrahigh power diode-pumped 1.5 mm fiber amplifie. Techn. Dig. OFC ’96, 1996, pp. 173-175.

[16] Pasquale F.D., Grasso G., Meli F., Sacchi G., Turolla S. 23 dBm output power Er/Yb co-doped fiber amplifier for WDM signals in the 1575 -1605 nm wavelength region. Proc. Opt. Fiber Com. Conf., 1999 & Int. Conf. on Integrated Opt. and Optical Fiber Com. Techn. Dig. OFC/IOOC ’99. 1999. Р 273-280.

[17] Barnard C., Myslinski P., Chrostowski J., Kavehrad M. Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers. IEEE J. Quantum Electron., 1994, vol. 30, no. 8., pp. 1817-1830.

[18] Okun’ L.B. Limits on electrodynamics: paraphotons? Zh. Eksp. Teor. Fiz. [J. Exp. Theor. Phys., vol. 56, pp. 502-505], 1982, vol. 83, no. 3, pp. 892-895 (in Russ.).

[19] Hoffmann S. Paraphotons and axions: Similarities in stellar emission and detection. Phys. Lett., 1986, B. 193, pp. 117-122.

[20] Jaeckel J., Redondo J., Ringwald A. Hidden laser communications through matter - An application of me V-scale hidden photons EPL (Europhysics Letters), 2009, vol. 87, p. 10010. DOI:10.1209/0295-5075/87/10010

[21] Bibber van K., Dagdeviren N.R., Koonin S.E., Kerman A.K., Nelson H.N. Proposed experiment to Produce and Detect Light Pseudoscalars. Phys. Rev. Lett., 1987, no. 59, pp. 759-762.