|

Highly Accurate Reconstruction of Spectral Optical Characteristics of a Medium Using Terahertz Pulsed Spectroscopy

Authors: Zaitsev K.I., Gavdush A.A., Karasik V.Ye., Yurchenko S.O. Published: 23.05.2014
Published in issue: #3(54)/2014  
DOI:

 
Category: Physics  
Keywords: terahertz technology, terahertz pulsed spectroscopy, inverse ill-posed problem of electrodynamics, terahertz spectral characteristics, complex refractive index of medium

Solving the inverse ill-posed problem is considered, which is connected with reconstruction of spectral optical properties of the sample based on results of its investigation using terahertz pulsed spectroscopy. A novel algorithm for determination of the spectral complex refractive index of a flat sample is developed. In contrast to the existing methods for solving this problem, the developed technique allows studying the samples with low refractive index and (or) small thickness. At the same time the required accuracy of the a priori determination of sample thickness is significantly reduced. Since the algorithm has the procedure for numerical refinement of sample thickness, it provides the correct reconstruction of optical characteristics of the sample with an accuracy of the sample thickness measurement no worse than ±100 μm. This imprecision is much smaller than the ordinary technique permits. Reconstruction ofTHz optical properties of the sample is implemented by means of the error functional minimization. The functional is based on two functions: experimental complex transfer function of the sample and quasi-Fabry-Perot-model of the sample transfer function. The algorithm is programmed and experimentally approved.

References

[1] Lee Y.-S. Principles of terahertz science and technology. NY., Springer, 2009.

[2] Brundermann E., Hubers H.-W., Kimmitt M.F. Terahertz techniques. NY, Springer, 2009.

[3] Mittleman D.M., Nuss M.C., Colvin V.L. Terahertz spectroscopy of water in inverse micelles. Chem. Phys. Lett., 1997, vol. 275, no. 3-4, pp. 332-338. DOI: 10.1016/S0009-2614(97)00760-4

[4] Nazarov M.M., Shkurinov A.P., Kuleshov E.A., Tuchin V.V. Terahertz time-domain spectroscopy of biological tissues. Quantum Electron., 2008, vol. 38, no. 7, pp. 647654. DOI:10.1070/QE2008v038n07ABEH013851

[5] Yurchenko S.O., Kryuchkov N.P. The structure and spectral properties of twodimensional dipole systems. Journal of Physics: Conference Series, 2014, vol. 486: 012031. DOI:10.1088/1742-6596/486/1/012031

[6] Bunkin N.F., Suyazov N.V., Shkirin A.V., Yurchenko S.O. Structure of the nanobubble clusters of dissolved air in liquid media. Journal of Biological Physics, 2012, vol. 38, no. 1, pp. 121-152. DOI: 10.1007/s10867-011-9242-8

[7] Aliev I.N., Yurchenko S.O. Evolution of perturbations of a charged interface between immiscible inviscid fluids in the interelectrode gap. Fluid Dynamics, 2010, vol. 45, no. 5, p. 817-826. D0I:10.1134/S0015462810050145

[8] Finkel M.I., Maslennikov S.N., Gol’tsman G.N. The concept of the receiving complex for the "millimetron" space radio telescope. Radiophysics and Quantum Electronics, 2007, vol. 50, no. 10-11, pp. 837-846. D0I:10.1007/s11141-007-0075-z

[9] Murrill S.R., Franck C.C., Espinola R.L., Petkie D.T., De Lucia F.C., Jacobs E.. Enhanced terahertz imaging system performance analysis and design tool for concealed weapon identification. Proceedings of SPIE Homepage, 2011, vol. 8188, article id. 81880J, pp. 1-15.

[10] Stoik C.D., Bohn M.J., Blackshire J.L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Optics Express, 2008, vol. 16, no. 21, pp. 17039-17051. D0I:10.1364/0E.16.017039

[11] Karpowicz N., Dawes D., Perry M.J., Zhang X.-C. Fire damage on carbon fiber materials characterization by THz waves. Proceedings of SPIE Homepage, 2006, vol. 6212, article id. 81880J, pp. 1-17. D0I:10.1117/12.665852

[12] Yakovlev E.V., Zaytsev K.I., Fokina I.N., Karasik V.E., Yurchenko S.0. Nondestructive testing of polymer composite materials using THz radiation. Journal of Physics: Conference Series, 2014, vol. 486: 012008. D0I:10.1088/1742-6596/486/1/012008

[13] Wallace V.P., Woodward R.M., Fitzgerald A.J., Pickwell E., Pye R.J., Arnone D.D. Terahertz pulsed imaging of cancers // Proceedings of SPIE, 2003, vol. 4949, pp. 353359. D0I:10.1117/12.500121

[14] Zaytsev K.I., Kudrin K.G., Koroleva S.A., Fokina I.N., Volodarskaya S.I., Novitskaya E.V., Perov A.N., Karasik V.E., Yurchenko S.O. Medical diagnostics using terahertz pulsed spectroscopy. Journal of Physics: Conference Series, 2014, vol. 486: 012014. D0I:10.1088/1742-6596/486/1/012014

[15] Fitzgerald A.J., Wallace V.P., Jimenez-Linan M., Bobrow L., Pye R.J., Purushotham A.D., Arnone D.D. Terahertz pulsed imaging of human breast tumors. Radiology, 2006, vol. 239, no. 2, pp. 533-540. D0I:10.1148/radiol.2392041315

[16] Ashworth P.C., Pickwell-MacPherson E., Provenzano E., Pinder S.E., Purushotham A.D., Pepper M., Wallace V.P. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Optics Express, 2009, vol. 17,no. 15, pp. 12444-12454. D0I:10.1364/0E.17.012444

[17] Reid C. Spectroscopic methods for medical diagnosis at terahertz wavelength. Ph. D. Thesis. London, University College, 2009. 194 p.

[18] Arbab M.H., Dickey T.C., Winebrenner D.P., Chen A., Klein M.B., Mourad P.D. Terahertz reflectometry of burn wounds in a rat model. Biomedical optics express, 2011, vol. 2, no. 8, pp. 2339-2347. D0I:10.1364/B0E.2.002339

[19] Pickwell E., Wallace V.P., Cole B.E., Ali S., Longbottom C., Lynch R.J.M., Pepper M. A comparison of terahertz pulsed imaging with transmission microradiography for depth measurement of enamel demineralization in vitro. Caries Research, 2007, vol. 41, no. 1, pp. 49-55. D0I:10.1159/000096105

[20] Volodarskaya S.I., Zaytsev K.I., Karasik V.E., Novitskaya E.V., Fokina I.N. Experimental justification the ability of tooth enamel early cariosity diagnosis with terahertz spectroscopy. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2013, no. 2, pp. 33-47 (in Russ.).

[21] Younus A., Caumes J.-P., Salort S., Chassagne B., Pradere C., Dautant A., Ziegle A., Abraham E. Continuous millimeter-wave imaging scanner for art conservation science. Advances in Optical Technologies, 2011, article ID 275682, pp. 1-9. D0I:10.1155/2011/275682

[22] Rubens H., Nichols E.F. Heat Rays of Great Wave Length. APS JOURNALS ARCHIVE. Phys. Rev. Series I.4.314, 1897, vol. 4, no. 4, pp. 314-323. D0I:10.1103/PhysRevSeriesI.4.314

[23] Glagolyeva-Arkadyeva A. Short electromagnetic waves of wave-length up to 82 Microns. Nature, 1924, vol. 113, iss. 2844, 640 G.

[24] Ryzhii V., Otsuji T., Ryzhii M., Leiman V.G., Yurchenko S.O. Effect of plasma resonances on dynamic characteristics of double grapheme-layer optical modulator. J. Appl. Phys., 2012, vol. 112, iss. 10: 104507. DOI:10.1063/1.4766814

[25] Ryzhii V., Otsuji T., Ryzhii M., Ryabova N., Yurchenko S.O., Mitin V., Shur M.S. Graphene terahertz uncooled bolometer. J. Phys. D: Appl. Phys., 2013, vol. 46, no. 6: 065102. DOI:10.1088/0022-3727/46/6/065102

[26] Ryzhii V., Otsuji T., Ryzhii M., Leiman V.G., Yurchenko S.O. Hydrodynamic model for electron-hole plasma in grapheme. J. Appl. Phys., 2012, vol. 111, no. 8: 083715. DOI: 10.1063/1.4705382

[27] Auston D.H. Picosecond Optoelectronic Switching and Gating in Silicon // Applied Physics Letters., 1975, vol. 26, no. 3, pp. 101-103. DOI: 10.1063/1.88079

[28] Zaytsev K.I., Fokina I.N., Fedorov A.K., Yurchenko S.O. Sensing of phase transition in medium with terahertz pulsed spectroscopy. Journal of Physics: Conference Series, 2014, vol. 486: 012024. DOI:10.1088/1742-6596/486/1/012024

[29] Zaytsev K.I., Gavdush A.A., Lebedev S.P., Yurchenko S.O. Novel algorithm for sample material parameter determination using THz time-domain spectrometer signal processing. Journal of Physics: Conference Series, 2014, vol. 486: 012018. DOI:10.1088/1742-6596/486/1/012018

[30] Zaytsev K.I., Karasik V.E., Fokina I.N., Alekhnovich V.I. Invariant embedding technique for medium permittivity profile reconstruction using terahertz time-domain spectroscopy. Optical Engineering, 2013, vol. 52, no. 6: 068203. DOI:10.1117/1.OE.52.6.068203

[31] Alekhnovich V.I., Zaytsev K.I., Karasik V.E. Medium dielectric permittivity profile reconstruction using terahertz time-domain spectroscopy. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 50-66 (in Russ.).

[32] Zaytsev K.I., Chernomyrdin N.V., Alekhnovich V.I. Novel technique for medium permittivity profile reconstruction using THz pulsed spectroscopy. Journal ofPhysics: Conference Series, 2014, vol. 486: 012010. DOI:10.1088/1742-6596/486/1/012010

[33] Grischkowsky D., Keiding S., Vanexter M. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B., 1990, vol. 7, no. 10, pp. 2006-2015. DOI:10.1364/JOSAB.7.002006

[34] Duvillaret L., Garet F., Coutaz J.-L. Highly precise determination of Optical Constants and sample thickness in Terahertz Time-Domain Spectroscopy. Appl. Opt., 1999, vol. 38, no. 2, pp. 409-415.

[35] Dorney T., Baraniuk R., Mittleman D. Material parameter estimation with Terahertz Time-Domain Spectroscopy. J. Opt. Soc. Am. A., 2001, vol. 18, no. 7, pp. 1562-1571. DOI: 10.1364/JOSAA.18.001562

[36] Pupeza I., Wilk R., Koch M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Optics Express, 2007, vol. 15, no. 7, pp. 43354350. DOI:10.1364/OE.15.004335

[37] Wilmink J., Ibey B., Tongue T., Schulkin B., Laman N., Peralta X., Roth C., Cerna C., Rivest B., Grundt J., Roach W. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. Journal of Biomedical Optics, 2011, vol. 16, no. 4: 047006

[38] Redo-Sanchez A., Salvatella G., Galceran R., Roldos E., Garcia-Reguero J.-A., Castellari M., Tejada J. Assessment of terahertz spectroscopy to detect antibiotic residues in food and feed matrices. Analyst, 2011, vol. 136, no. 8, pp. 1733-1738. DOI:10.1039/c0an01016b

[39] Kochikov I.V., Morozov A.N., Fufurin I.L. Numerical procedures for substances identification and concentration calculation in the open athmosphere by processing a single ftir measurement. Computer Optics, 2012, vol. 36, no. 4, pp. 554-561.

[40] Harris F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 1978, vol. 66, no. 1, pp. 51-83. DOI:10.1109/PROC.1978.10837

[41] Kozlov G.V., Volkov A.A. Coherent source submillimeter wave spectroscopy. Millimeter and Submillimeter Wave Spectroscopy of Solids. Topics in Applied Physics, 1998, no. 74, pp. 51-109. D0I:10.1007/BFb0103420

[42] Gorshunov B., Volkov A., Spektor I., Prokhorov A., Mukhin A., Dressel M., Uchida S., Loidl A. Terahertz BWO-spectroscopy. Int. J. of Infrared and Millimeter Waves, 2005, vol. 26, no. 9, pp. 1217-1240. DOI: 10.1007/s10762-005-7600-y