|

Application of Low-Frequency Optical Resonance for Detection of High-Frequency Gravitational Waves

Authors: Esakov A.A., Morozov A.N., Tabalin S.Ye., Fomin I.V. Published: 08.02.2015
Published in issue: #1(58)/2015  
DOI: 10.18698/1812-3368-2015-1-26-35

 
Category: Physics  
Keywords: Fabry-Perot interferometer, low-frequency optical resonance, gravitational-wave perturbations, spectral density

The authors analyze opportunity of application of the Fabry-Perot interferometers for detection of high-frequency gravitational wave perturbations occurred during the initial stage of the formation of the Universe. It is shown that at usage of the phenomenon of low-frequency optical resonance there is opportunity of tuning of laser interferometric gravitational wave antenna for detection of high-frequency perturbations. The calculation formulas for determination of the spectral sensitivity of the Fabry-Perot interferometer are obtained and the level of the minimum detectable spectral density of fluctuations of the space-time metric is evaluated. We have the advantage of this version of laser interferometric gravitational wave antenna due to absence of necessity to host mirrors of the interferometer on free masses.

References

[1] Abbott B.P., Abbott R., Adhikari R., Ajith P., Allen B. et al. of the LIGO Scientific Collaboration. LIGO: The laser interferometer gravitational-wave observatory. Reports on Progress in Physics, AIP, 2009, vol. 72: 076901, pp. 1-25. DOI: 10.1088/0034-4885/72/7/076901

[2] Accadia T., Acernese F., Astone P., Ballardin G. et al. of the Scientific Collaboration A state observer for the Virgo invented pendulum. Review of scientific instruments, AIP, 2011, vol. 82: 094502. DOI: 10.1063/1.3637466

[3] Ando M., Arai K., Aso Y., Beyersdorf P.T. et al. Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses. Phys. Rev. D., 2005, vol. 71, no. 8, pp. 082002-1-082002-17. DOI: 10.1103/PhysRevD.71.082002

[4] Grote H., Danzmann K., Dooley K.L., Schnabel R., Slutsky J., Vahlbruch H. First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett., 2013, vol. 110, pp. 181101-1-181101-5. DOI: 10.1103/PhysRevLett.110.181101

[5] Amaldi E., Pizzella G. The search for gravitational waves, in Relativity, Quanta and Cosmology in the development of the scientific thought of Albert Einstein. New York, USA, Johnson Reprint Corporation, Academic Press, 1979 (Russ. ed.: Amal’di E., Pitsella G. Poisk gravitatsionnykh voln. Astrofizika, kvanty i teoriya otnositel’nosti. Moscow, Mir Publ., 1982 (pp. 241-396).

[6] Bichak I., Rudenko V.N. Gravitatsionnye volny v OTO i problema ikh obnaruzheniya [Gravitational waves at general theory of relativity (GTR) and the problem of their detection]. Moscow, MGU Publ., 1987. 264 p.

[7] Boyle L.A., Steinhardt P.J., Turok N. The cosmic gravitational-wave background in a cyclic universe. Phys. Rev. D, Particles Fields, The American Physical Society, 2004, vol. 69: 127302-127302.4. DOI: 10.1103/PhysRevD.69.127302

[8] Sa P.M., Henriques A.B. Gravitational-wave generation in hybrid quintessential inflationary models. Phys. Rev. D. 2010, vol. 81: 124043. DOI: 10.1103/PhysRevD.81.124043

[9] Nishizawa A., Motohashi H. Constraint on reheating after f (R) inflation from gravitational waves. Phys. Rev. D., 2014, vol. 89: o63541. DOI: 10.1103/PhysRevD.89.063541

[10] Li F., Tang M., Shi D. Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models. Phys. Rev. D., 2003, vol. 67: 104008. DOI: 10.1103/PhysRevD.67.104008

[11] Woods R.C., Baker R.M.L., Li F., Stephenson G.V., Davis E.W., Beckwith A.W. A new theoretical technique for the measurement of high-frequency relic gravitational waves. J. Modern Physics, 2011, no. 2, pp. 498-518. DOI: 10.4236/jmp.2011.26060

[12] Pustovoyt V.I., Gertsenshteyn M.E. On the problem about detection of low frequency gravitational waves. Zh. Eksp. Teor. Fiz. [J. Exp. Theor. Phys.], 1962, vol. 43, iss. 8, pp. 605-607 (in Russ.).

[13] Gladyshev V.O., Morozov A.N. Classification of gravitational-wave antennas by the methods of gravitational radiation detection. Izmeritel’naya tekhnika [Measurement Technique, 2000, vol. 43, iss. 9, pp. 741-746], 2000, no. 9, pp. 21-25 (in Russ.). DOI: 10.1023/A:1026616020579

[14] Gladyshev V.O., Morozov A.N. Low-frequency optical resonance in multiple-beam Fabry-Perot interferometer. Pis’ma Zh. Tekh. Fiz. [Tech. Phys. Lett.], 1993, vol. 19, iss. 14, pp. 39-42 (in Russ.).

[15] Morozov A.N. Fabry-Perot interferometer application for registration of high-frequency fluctuations of the metric space-time. Jelektr. nauchno-tehn. Izd. "Inzhenernyj zhurnal: nauka i innovacii" MGTU im. N.E. Baumana [El. Sc.-Techn. Publ. "Eng. J. Science and Innovation" of Bauman MSTU], 2012, no. 5, pp. 24-38 (in Russ.). Available at: http://engjournal.ru/articles/203/203.pdf (accessed 24.04.2014).

[16] Morozov A.N. Neobratimye protsessy i brounovskoe dvizhenie: Fiziko-tekhnicheskie problemу [Irreversible processes and Brownian motion: physical and technical problems]. Moscow, MGTU im. N.E. Baumana Publ., 1997. 332 p.

[17] Gladyshev V.O., Morozov A.N. The theory of a Fabry-Perot interferometer in a gravitational wave experiment. J. Moscow Phys. Soc., 1996, vol. 6, pp. 209-221.

[18] Gladyshev V.O., Morozov A.N. Low-frequency optical resonance in multi-beams Fabry-Perot resonator and problem of gravitational waves detection. Proc. of XIII Int. Sci. Meeting "Physical Interpretations of Relativity Theory". Moscow, 2007, pp. 6-10.