Method of Registration and Analysis of Spectra Obtained by Infrared Quantum-Cascade Laser
Authors: Samsonov D.A., Tabalina A.S., Fufurin I.L. | Published: 01.08.2018 |
Published in issue: #4(79)/2018 | |
DOI: 10.18698/1812-3368-2018-4-90-101 | |
Category: Physics | Chapter: Instrumentation and Methods of Experimental Physics | |
Keywords: infrared spectroscopy, laser infrared spectroscopy, least square method, quantum-cascade laser, identification, concentration recovery |
The work introduces a method of registration and analysis of the transmission spectra obtained by Quantum Cascade Laser (QCL). We describe an experimental facility for registration of the IR transmission spectra using QCL and give examples of the obtained experimental spectra of test substances. We also deal with a method for identification and concentration of substances using experimental data. Furthermore, we estimate the error of concentration recovery of several test substances and compare the results obtained with the results of another method of spectral quantitative analysis. Results suggest that in the concentration range studied, the difference in the calculated values of concentrations does not exceed 3σ. Based on the studies carried out, a conclusion is made about the effectiveness of the proposed method of registering and analyzing the infrared transmission spectra for solving problems of remote identification and recovery of concentrations of various substances
This work was supported by the Russian Foundation for Basic Research (grant no. 16-29-09625)
References
[1] Morozov A.N., Svetlichnyy S.I. Osnovy furye-spektroradiometrii [Fundamentals of Fourier spectroscopy]. Moscow, Nauka Publ., 2014. 456 p.
[2] Golyak I.S., Golyak Il.S., Karfidov A.O., et al. Panoramic Fourier spectral radiometer PHRDD-4. Pribory i tekhnika eksperimenta [Instruments and Experimental Techniques], 2014, no. 6, pp. 119–120 (in Russ.).
[3] Bashkin S.V., Boyko A.Yu., Kornienko V.N., et al. Experimental results of investigating panoramic Fourier transform infrared spectrometer. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 2, pp. 51–54 (in Russ.). DOI: 10.18698/1812-3368-2016-2-51-64
[4] Berkdemir A., Gutierrez H.R., Botello-Mendez A.R., Perea-Lopez N., Elías A.L., Chen-Ing Chia, Wang B., Crespi V.H., Florentino L.-S., Charlier J.-C., Terrones H., Terronesa M. Identification of individual and few layers of WS2 using Raman spectroscopy. Scientific Reports, 2013, no. 3, art. 1755. DOI: 10.1038/srep01755
[5] Vintaykin Е.B., Vasilyev N.S., Golyak I.S., et al. Raman Spectrometer Based on a Static Michelson Interferometer. Izvestiya RAN. Energetika [Proceedings of RAS. Power Engineering], 2016, no. 6, pp. 144–152 (in Russ.).
[6] Gokce H., Ozturk N., Ceyla U., Alpaslan Ye.B., Alpaslan G. Thiol-thione tautometric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, vol. 163, pp. 170–180. DOI: 10.1016/j.saa.2016.03.041
[7] Schwaighofer A., Alcaraz M.R., Araman C., Goicoechea H., Lendl B. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations. Scientific Reports, 2016, no. 6, art. 33556. DOI: 10.1038/srep33556
[8] Deutsch E.R., Kotidis P., Zhu N., Goyal A.K., Ye J., Mazurenko A., Norman M., Zafiriou K., Baier M., Connors R. Active and passive infrared spectroscopy for the detection of environmental threats. Proc. Advanced Environmental, Chemical, and Biological Sensing Technologies XI, 2014, vol. 9106, art. 91060A. DOI: 10.1117/12.2058544
[9] Volkov V.G. Quantum cascade lasers and their application in safety and communication systems. Sistemy upravleniya, svyazi i bezopasnosti [Systems of Control, Communication and Security], 2016, no. 1, pp. 10–41 (in Russ.).
[10] Kozintsev V.I., Belov M.L., Gorodnichev V.A., Fedorov Yu.V. Lazernyy optiko-akusticheskiy analiz mnogokomponentnykh gazovykh smesey [Optoacoustic laser analysis of multi-component gas mixture]. Moscow, Bauman MSTU Publ., 2003. 351 p.
[11] Kanatnikov A.N., Krishchenko A.P. Lineynaya algebra [Linear algebra]. Moscow, Bauman MSTU Publ., 2006. 387 p.
[12] Tsey P., Shumofon M.M. Matrix condition number and as a stability charateristics in solving of applied problems. Trudy FORA [Works of the Adygheya Republic Physical Society], 2011, no. 16, pp. 61–67 (in Russ.).
[13] Pearson K. Note on regression and inheritance in the case of two parents. Proc. Royal Society of London, 1895, vol. 58, pp. 347–352. DOI: 10.1098/rspl.1895.0041
[14] Morozov A.N., Kochikov I.V., Novgorodskaya A.V., Sologub A.A., Fufurin I.L. Statistical estimation of the probability of the correct substance detection in FTIR spectroscopy. Kompyuter-naya optika [Computer Optics], 2015, vol. 39, no. 4, pp. 614–621 (in Russ.). DOI: 10.18287/0134-2452-2015-39-4-614-621