|

Infrared and Raman Spectroscopy of Glycine and Tyrosine Polycrystals

Authors: Belyanchikov M.A., Gorelik V.S., Gorshunov B.P., Pyatyshev A.Yu.  Published: 10.08.2016
Published in issue: #4(67)/2016  
DOI: 10.18698/1812-3368-2016-4-4-13

 
Category: Physics | Chapter: Laser Physics  
Keywords: infrared spectroscopy, Raman scattering, glycine, tyrosine, spectrum

The study tested the low-frequency Raman spectra of crystal lattices of glycine and tyrosine amino acids and revealed intense sharp lines corresponding to the libration modes, related to pseudoscalar symmetry type. We found the essential difference between spectra of pure and racemic chiral phases of amino acids. The obtained results are useful for monitoring the chiral purity states of bioactive substances containing amino acids.

References

[1] Breen M.S., Kemena C., Vlasov P.K., Notredame C., Kondrashov F.A. Epistasis as the primary factor in molecular evolution. Nature, 2012, vol. 490, iss. 7421, pp. 535-538.

[2] Jenkins A.L., Larsen R.A., Williams T.B. Characterization of amino acids using Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, vol. 61, iss. 7, pp. 1585-1594.

[3] Gaillard T., Trivella A., Stote R.H., Hellwig P. Far infrared spectra of solid state L-serine, L-threonine, L-cysteine, and L-methionine in different protonation states. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, vol. 150, pp. 301-307.

[4] Jarmelo S., Reva I., Carey P.R., Fausto R. Infrared and Raman spectroscopic characterization of the hydrogen-bonding network in L-serine crystal. Vibrational Spectroscopy, 2007, vol. 43, iss. 2, pp. 395-404.

[5] Moovendaran K., Martin Britto Dhas S.A., Natarajan S. Spectral characterization of a non-centrosymmetric organic compound: D-(-)-alanine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, vol. 112, pp. 326-330.

[6] Lima Jr. J.A., Freire P.T.C., Lima R.J.C., Moreno A.J.D., Mendes Filho J., Melo F.E.A. Raman scattering of L-valine crystals. Journal of Raman Spectroscopy, 2005, vol. 36, iss. 11, pp. 1076-1081.

[7] Zhu G., Zhu X., Fan Q., Wan X. Raman spectra of amino acids and their aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, vol. 78, iss. 3, pp. 1187-1195.

[8] Yao G., Zhang J., Huang Q. Conformational and vibrational analyses of metatyrosine: An experimental and theoretical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, vol. 77, pp. 35-39.

[9] Silva J.A.F., Freire P.T.C., Lima Jr. J.A., Mendes Filho J., Melo F.E.A., Moreno A.J.D., Poli-an A. Raman spectroscopy of monohydrated L-asparagine up to 30 Gpa. Vibrational Spectroscopy, 2015, vol. 77, pp. 35-39.

[10] Daniel A., Prakassaro A., Dornadula K., Ganesan S. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, vol. 152, pp. 58-63.

[11] Krishnan R.S., Sc F.A., Balasubramanian K. Raman spectrum of crystalline a-glycine. Proceedings of the Indian Academy of Sciences-Section A, 1958, vol. 48, iss. 2, pp. 55-61.

[12] Tsuboi M., Ezaki Y., Aida M., Suzuki M., Yimit A., Ushizawa K., Ueda T. Raman scattering tensors of tyrosine. Biospectroscopy, 1998, vol. 4. iss. 1, pp. 61-71.

[13] Suzuki S., Shimanouchi T., Tsuboi M. Normal vibrations of glycine and deuterated glycine molecules. Spectrochimica Acta, 1963, vol. 19, iss. 7, pp. 1195-1208.

[14] Stenback H. On the Raman spectra of solid natural a-glycine and solid 15N-substituted a-glycine. Journal of Raman Spectroscopy, 1976, vol. 5, iss. 1, pp. 49-55.

[15] Machida K., Kagayama A., Saito Y., Kuroda Y., Uno T. Vibrational spectra and intermolecular potential of the a-form crystal of glycine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1977, vol. 33, iss. 5, pp. 569-574.

[16] Grace L.I., Cohen R., Dunn T.M., Lubman D.M., de Vries M.S. The R2PI spectroscopy of tyrosine: A vibronic analysis. Journal of Molecular Spectroscopy, 2002, vol. 215, iss. 2, pp. 204-219.

[17] Gorelik V.S., Dovbeshko G.I., Krylov A.S., Pyatyshev A.Yu. Raman scattering of a dried DNA exposed to laser excitation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 1, pp. 27-34 (in Russ.).