|

Detection of Raman Scattering Spectra of High Spectral Resolution in Short Oligonucleotides: Compared with the Full-Length DNA Spectra

Authors: Bayramov F.B., Toporov V.V., Poloskin E.D., Chernev A.L. , Dubina M.V., Lipsanen H., Bairamov B.Kh. Published: 12.04.2017
Published in issue: #2(71)/2017  
DOI: 10.18698/1812-3368-2017-2-70-84

 
Category: Physics | Chapter: Optics  
Keywords: oligonucleotides, DNA, spectroscopy of Raman scattering

The study focuses on examining the high spectral resolution spectra by high sensitivity nonresonant Raman scattering method in biomacromolecules on the example of singlestranded short oligonucleatides d (20G, 20T), where d is abbreviation from deoxyribonucleotide, G - guanine and T - thymine. Detection of the narrow spectral lines allows us to determine the characteristic time scale of vibrational excitation and makes it possible to study the dynamics of fast relaxation processes of atoms vibrational motions in biomacromolecules. Findings of the research show that for one of the narrowest line at 1355.4 sm–1, attributed to fluctuations of the methyl group of dT, the full width of the line on a half of its height equals 14.6 sm–1 and the appropriate life time equals 0.38 ps. We compared the obtained spectra with the complete Raman scattering spectra obtained from the dried-up fullsized DNA of a calf received with the high spectral and spatial resolution and observed in the broad spectral range of the frequency shifts of the scattered light from 6 to 4000 sm–1. The received results show that short oligonucleotides can be used as successful model objects for investigating the molecular DNA structure when studying their secondary structures. These data can be also required in creating and investigating different complexes with inorganic semiconductor nanostructures on the basis of such short oligonucleotides. The results obtained in the research make it possible to implement theoretical and experimental studies required for achieving a deeper fundamental understanding of structure-property relationship for quantum-confined semiconductors nanostructures and biomolecules and, are therefore of high interest to the new directions of rapidly developing nanobioelectronics.

References

[1] Marnix H., Medema M.H., Raaphorst R., Takano E., Breitling R. Computational tools for the synthetic design of biochemical pathways. Nature Reviews Microbiology, 2012, vol. 10, no. 3, pp. 191–202. DOI: 10.1038/nrmicro2717 Available at: http://www.nature.com/nrmicro/journal/v10/n3/full/nrmicro2717.html

[2] Fleischmann M., Hendra P.J., McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, vol. 26, no. 2, pp. 163–166. DOI: 10.1016/0009-2614(74)85388-1 Available at: http://www.sciencedirect.com/science/article/pii/0009261474853881

[3] Jeanmaire D.L., Van Duyne R.P. Surface Raman spectroelectro-chemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem., 1977, vol. 84, no. 1, p. 1–20. DOI: 10.1016/S0022-0728(77)80224-6 Available at: http://www.sciencedirect.com/science/article/pii/S0022072877802246

[4] Albrecht M.G., Creighton J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977, vol. 99, no. 15, pp. 5215–5217. DOI: 10.1021/ja00457a071 Available at: http://pubs.acs.org/doi/abs/10.1021/ja00457a071

[5] McCall S.L., Platzman P.M., Wolff P.A. Surface enhanced Raman scattering. Physics Letters A, 1980, vol. 77, no. 5, pp. 381–383. DOI: 10.1016/0375-9601(80)90726-4 Available at: http://www.sciencedirect.com/science/article/pii/0375960180907264

[6] Wang D.-S., Kerker M., Chew H.W. Raman and fluorescent scattering by molecules embedded in dielectric spheroids. Appl. Opt., 1980, vol. 19, no. 14, pp. 2315–2328. DOI: 10.1364/AO.19.002315 Available at: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-19-14-2315

[7] Gersten J.I., Nitzan A. Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys., 1981, vol. 75, no. 3, pp. 1139–1152. DOI: 10.1063/1.442161 Available at: http://aip.scitation.org/doi/10.1063/1.442161

[8] Otto A. In light scattering in solids IV. Electronic scattering, spin effects, SERS and morphic effects. Ed. by M. Cardona and G. Guntherodt. Berlin, Springer-Verlag, 1984.

[9] Kneipp K., Fassler D. SERS excitation profile investigation of a cyanine dye adsorbed on silver colloidal particles. Chem. Phys. Lett., 1984, vol. 106, no. 6, pp. 498–502.

[10] Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys., 1985, vol. 57, pp. 783–826. DOI: 10.1103/RevModPhys.57.783 Available at: http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.57.783

[11] Nabiev I.R., Efremov R.G., Chumanov G.D. Surface-enhanced Raman scattering and its application to the study of biological molecules. Uspekhi Fizicheskikh Nauk, 1988, vol. 154, no. 3, pp. 459–496 (in Russ.). DOI: 10.3367/UFNr.0154.198803d.0459

[12] Otto A., Mrozek I., Grabhorn H., Akemann W. Surface-enhanced Raman scattering. J. Phys.: Condens. Matter., 1992, vol. 19924, pp. 1143–1212.

[13] Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, vol. 78, no. 9, pp. 1667–1670. DOI: 10.1103/PhysRevLett.78.1667 Available at: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.78.1667

[14] Nie S., Emory S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, vol. 275, no. 5303, pp. 1102–1106. DOI: 10.1126/science.275.5303.1102 Available at: http://science.sciencemag.org/content/275/5303/1102

[15] Campion A., Kambhampati P. Surface enhanced Raman scattering. Chem. Soc. Rev., 1998, vol. 27, pp. 241–249. DOI: 10.1039/A827241Z Available at: http://pubs.rsc.org/en/Content/ArticleLanding/1998/CS/a827241z#!divAbstract

[16] Cao Y.C., Jin R., Mirkin C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, vol. 297, no. 5586, pp. 1536–1540. DOI: 10.1126/science.297.5586.1536 Available at: https://www.ncbi.nlm.nih.gov/pubmed/12202825

[17] Drachev V.P., Thoreson M.D., Khaliullin E.N., Davison V.J., Shalaev V.M. Surface-enhanced Raman difference spectroscopy with adaptive nanostructures: Human insulin and insulin lispro. Journal of Physical Chemistry B, 2004, vol. 108, no. 46, pp. 18046–18052. DOI: 10.1021/jp047254h Available at: http://pubs.acs.org/doi/abs/10.1021/jp047254h

[18] Vo-Dinh T., Yan F., Wabuyele M.B. Surface-enhanced Raman scattering for medical diagnostics and biological imaging. J. Raman Spectrosc., 2005, vol. 36, pp. 640–647. DOI: 10.1002/jrs.1348 Available at: http://onlinelibrary.wiley.com/doi/10.1002/jrs.1348/pdf

[19] Qian X., Peng X., Ansari D.O., Yin-Goen Q., Chen G.Z., Shin M.D., Yang L. Young A.N., Wang M.D., Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology, 2008, vol. 26, pp. 83–90. DOI: 10.1038/nbt1377 Available at: http://www.nature.com/nbt/journal/v26/n1/abs/nbt1377.html

[20] Sun L., Irudayar J. Quantitative surface-enhanced Raman for gene expression estimation. Biophysical Journal, 2009, vol. 96, no. 11, pp. 4709–4716. DOI: 10.1016/j.bpj.2009.03.021 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711453

[21] Kukushkin V.I., Van’kov A.B., Kukushkin I.V. Relationship between the giant enhancement of the Raman scattering and luminescence on nanostructured metallic surfaces. JETP Letters, 2013, vol. 98, no. 6, pp. 342–347. DOI: 10.1134/S0021364013190089

[22] Bayramov B.Kh., Toporov V.V., Bayramov F.Kh., Irmer G., Dutta M., Stroscio M.A. Neuprugoe rezonansnoe rasseyanie sveta v poluprovodnikakh: ot ob’’emnykh materialov do kvantovykh tochek, funktsionalizirovannykh s biomeditsinskimi strukturami. Kollektivnaya monografiya. Kombinatsionnoe rasseyanie - 80 let issledovaniy [Resonant inelastic scattering in semiconductors: From bulk materials to quantum dots, functionalized with biomedical structures. Multi-authored monograph. Raman scattering – 80 years of research]. Moscow, LPI RAS Publ., 2008, pp. 326–338 (in Russ.).

[23] Bayramov F.H., Irmer G., Toporov V.V., Bairamov B.H. Structural, optical and electrical properties of semiconductor compounds studied by means of inelastic light scattering from phonon, electron and coupled electron-phonon excitations: From bulk to nanoscale structures. Jap. J. Apl. Phys., 2011, vol. 50, pp. 05FE06. DOI: 10.1143/JJAP.50.05FE06 Available at: http://iopscience.iop.org/article/10.1143/JJAP.50.05FE06/meta

[24] Bayramov F.B., Toporov V.V., Poloskin E.D., Bairamov B.H., Röder С., Sprung С., Bohmhammel G., Seidel K., Irmer G., Lashkul A., Lahderanta E., Song Y.W. Resonant inelastic light scattering and photoluminescence in isolated nc-Si/SiO2 quantum dots Semiconductors. Fizika i tekhnika poluprovodnikov, 2013, vol. 47, no. 5, pp. 608–612.

[25] Gorelik V.S., Dovbeshko G.I., Krylov A.S., Pyatyshev A.Yu. Raman scattring of a dried DNA exposed to laser excitation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2014, no. 1, pp. 27–34.