|

Wavefront Control for Coherent Electromagnetic Radiation in an Optical Ring Resonator

Authors: Gladyshev V.O., Goryushkina D.D., Kuryatov V.N. Published: 27.09.2018
Published in issue: #5(80)/2018  
DOI: 10.18698/1812-3368-2018-5-54-64

 
Category: Physics | Chapter: Optics  
Keywords: ring laser gyroscope, optical ring resonator, frequency lock-in, Fizeau effect, coherent electromagnetic radiation

The paper investigates whether it is possible to employ the Fizeau effect in order to control the phase of the laser radiation wavefront in an optical ring resonator. This method may potentially solve the issue of frequency lock-in, also known as mode locking, occurring in laser gyroscopes. We analysed the effect that a non-reciprocal optical element consisting of two linearly moving prisms has on the gyroscope output. We present a numerical assessment of the efficiency of our method

The study was supported by RFBR (grants no. 16-02-00488 A, no. 16-08-00618 A)

References

[1] Aronowitz F. The laser gyro. In: Laser applications. Vol. 1. Academic Press, 1971. Pp. 133–200.

[2] Bogdanov A.D. Giroskopy na lazerakh [Laser gyros]. Moscow, Voenizdat Publ., 1973. 72 p.

[3] Klimontovich Yu.L., Kuryatov V.N., Landa P.S. Wave synchronization in a gas laser with a ring Resonator. JETP, 1967, vol. 24, no. 1, pp. 1–7.

[4] Pomerantsev N.M., Skrotskiĭ G.V. Physical principles of quantum gyroscopy. Soviet Physics Uspekhi, 1970, vol. 13, no. 2, pp. 147–165. DOI: 10.1070/PU1970v013n02ABEH004203

[5] Bychkov S.I., Lukyanov D.P., Bakalyar A.I. Lazernyy giroskop [Laser gyro]. Moscow, Sovetskoe radio Publ., 1975. 424 p.

[6] Kornienko L.S., Kravtsov N.V., Lariontsev E.G., Paleev S.R., Sidorov V.A. Frequency characteristics of a ring laser with a kinematic offset. Soviet Journal of Quantum Electronics, 1986, vol. 16, no. 1, pp. 149–150. DOI: 10.1070/QE1986v016n01ABEH005699

[7] Macek W.N., Schneider J.R., Salamon R.M. Measurement of Fresnel drag with the ring laser. J. Appl. Phys., 1964, vol. 35, iss. 8, pp. 2556–2557. DOI: 10.1063/1.1702908

[8] Malykin G.B. Sagnac effect in ring lasers and ring resonators. How does the refractive index of the optical medium influence the sensitivity to rotation? Physics–Uspekhi, 2014, vol. 57, no. 7, pp. 714–720. DOI: 10.3367/UFNe.0184.201407g.0775

[9] Frankfurt U.I., Frenk A.M. Optika dvizhushchikhsya tel [Optics of moving bodies]. Moscow, Nauka Publ., 1972. 212 p.

[10] Kravtsov N.V., Kravtsov N.N. Nonreciprocal effects in ring lasers. Quantum Electronics, 1999, vol. 29, no. 5, pp. 378–399. DOI: 10.1070/QE1999v029n05ABEH001495

[11] Gladyshev V.O., Gladysheva T.M., Dashko M., Podguzov G.V. The anisotropy of the space of velocities of the electromagnetic radiation in moving media. Giperkompleksnye chisla v geometrii i fizike [Hypercomplex Numbers in Geometry and Physics], 2006, vol. 3, no. 6-2, pp. 175–189 (in Russ.).

[12] Privalov V.E., Filatov Yu.V. Investigation of the output characteristic of a rotating ring gas laser. Soviet Journal of Quantum Electronics, 1977, vol. 7, no. 7, pp. 802–806. DOI: 10.1070/QE1977v007n07ABEH012652

[13] Bilger H., Zavodny A. Fresnel drag in a ring laser: measurement of the dispersive term. Phys. Rev. A, 1972, vol. 5, pp. 591.

[14] Lindop A.J. Ring lasers. US Patent 4247831. Appl. 29.11.1978, publ. 27.01.1981.

[15] Gladyshev V.O., Tiunov P.S., Leontev A.D., Gladysheva T.M., Sharandin E.A. Anisotropy of the velocity space of electromagnetic radiation in a moving medium. Technical Physics, 2012, vol. 57, iss. 11, pp. 1519–1528. DOI: 10.1134/S1063784212110114

[16] Gladyshev V.O., Morozov A.N. Low-frequency optical resonance in a multiple-wave Fabry — Perot interferometer. Pisma v ZhTF, 1993, vol. 19, no. 14, pp. 38–42 (in Russ.).

[17] Gladyshev V.O., Morozov A.N. The theory of a Fabry — Perot interferometer in a gravitational-wave experiment. J. Moscow Phys. Soc., 1996, vol. 6, no. 3, pp. 209–221.