Laser Photoluminescence Spectroscopy of the Subsurface Microstructure in a Nafion Polymer Membrane in Deuterated Water
Authors: Bunkin N.F., Golyak Ig.S., Golyak Il.S., Kozlov V.A., Primenko A.E., Fufurin I.L. | Published: 20.02.2019 |
Published in issue: #1(82)/2019 | |
DOI: 10.18698/1812-3368-2019-1-48-65 | |
Category: Physics | Chapter: Optics | |
Keywords: photoluminescence, optical pumping, optical fibre waveguides, polymer membrane, deuterium, polymer swelling |
The paper describes experiments in exposing the surface of a water-swollen Nafion polymer membrane to near ultraviolet radiation at grazing incidence. Ultraviolet radiation caused the surface of the Nafion polymer membrane to photoluminesce in a specific spectral range. This luminescence appears due to the presence of sulphonic acid groups at the ends of perfluorovinyl ether groups that form the polytetrafluoroethylen base of the Nafion membrane. We show that the photoluminescence signal is an important parameter for describing the process of polymer swelling in water
The study was supported by RFBR (grants no. 15-02-07586, no. 16-52-540001 and no. 1702-02-00214)
References
[1] Ivanchev S.S., Myakin S.B. Polymer membranes for fuel cells: manufacture, structure, modification, properties. Russ. Chem. Rev., 2010, vol. 79, no. 2, pp. 101–117. DOI: 10.1070/RC2010v079n02ABEH004070
[2] Kreuer K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membrane Sci., 2001, vol. 185, iss. 1, pp. 29–39. DOI: 10.1016/S0376-7388(00)00632-3
[3] Gierke T.D., Munn G.E., Wilson F.C. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Polym. Phys. Ed., 1981, vol. 19, iss. 11, pp. 1687–1704. DOI: 10.1002/pol.1981.180191103
[4] Gebel G. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer, 2000, vol. 41, iss. 5, pp. 5829–5838. DOI: 10.1016/S0032-3861(99)00770-3
[5] Bass M., Berman A., Singh A., et al. Surface-induced orientation of micelles in films of Nafion. Macromolecules, 2011, vol. 44, no. 8, pp. 2893–2899. DOI: 10.1021/ma102361f
[6] Chai B., Pollack G.H. Solute-free interfacial zones in polar liquids. J. Phys. Chem. B, 2010, vol. 114, no. 16, pp. 5371--5375. DOI: 10.1021/jp100200y
[7] Pollack G.H. The fourth phase of water. Ebner and Sons Publ., 2013.
[8] Yip J., Duhamel J., Qiu X.P., et al. Fluorescence studies of a series of monodisperse telechelic a, w-dipyrenyl poly(N-isopropylacrylamide)s in ethanol. Can. J. Chem., 2011, vol. 89, no. 2, pp. 163–172. DOI: 10.1139/V10-117
[9] Yip J., Duhamel J., Qiu X.P., et al. Long-range polymer chain dynamics of pyrenela-belled poly(N-isopropylacrylamide)s studied by fluorescence. Macromolecules, 2011, vol. 44, no. 13, pp. 5363–5372. DOI: 10.1021/ma2007865
[10] Holappa S., Kantonen L., Anderson T., et al. Overcharging of polyelectrolyte complexes by the guest polyelectrolye studied by fluorescence spectroscopy. Langmuir, 2005, vol. 21, no. 24, pp. 11431–11438. DOI: 10.1021/la051866r
[11] Gudkov S.V., Astashev M.E., Bruskov V.I., et al. Self-oscillating water chemiluminescence modes and reactive oxygen species generation induced by laser irradiation; effect of the exclusion zone created by Nafion. Entropy, 2014, vol. 16, no. 11, pp. 6166–6185. DOI: 10.3390/e16116166
[12] Bunkin N.F., Gorelik V.S., Kozlov V.A., et al. Phase states of water near the surface of a polymer membrane. Phase microscopy and luminescence spectroscopy experiments. J. Exp. Theor. Phys., 2014, vol. 119, iss. 5, pp. 3372–3377. DOI: 10.1134/S106377611411003X
[13] Pope J.C., Sue H., Bremner T., et al. High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: a solid-state NMR study. Polymer, 2014, vol. 55, iss. 18, pp. 4577–4585. DOI: 10.1016/j.polymer.2014.07.027
[14] Vinogradova L.V., Török Gy., Lebedev V.T. Amphiphilic star-shaped polymer with fullerene (C60) branching center and its micelle-forming properties in D2O solutions. Rus. J. Appl. Chem., 2012, vol. 85, iss. 10, pp. 1594–1599.DOI: 10.1134/S1070427212100217
[15] Starovoytova L., Spevacek J. Effect of time on the hydration and temperature-induced phase separation in aqueous polymer solutions. 1H NMR study. Polymer, 2006, vol. 47, iss. 21, pp. 7329–7334. DOI: 10.1016/j.polymer.2006.08.002
[16] Velychkivska N., Bogomolova A., Filippov S.K., et al. Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl ether) in the presence of hydrophobic tert-butyl alcohol. Colloid Polym. Sci., 2017, vol. 295, iss. 8, pp. 1419–1428. DOI: 10.1007/s00396-017-4100-2
[17] Morozov A.N., Kochikov I.V., Novgorodskaya A.V., et al. Statistical estimation of the probability of the correct substance detection in FTIR spectroscopy. Kompyuternaya optika [Computer Optics], 2015, vol. 39, no. 4, pp. 614–621 (in Russ.). DOI: 10.18287/0134-2452-2015-39-4-614-621
[18] Luinge H.J. Automated interpretation of vibrational spectra. Vib. Spectrosc., 1990, vol. 1, iss. 1, pp. 3--18. DOI: 10.1016/0924-2031(90)80002-L