|

Quasielastic and Low-Frequency Raman Light Scattering in Lithium Niobate Crystals with Stoichiometric Defects

Authors: Anikiev A.A., Umarov M.F., Anikieva E.N. Published: 16.04.2019
Published in issue: #2(83)/2019  
DOI: 10.18698/1812-3368-2019-2-32-50

 
Category: Physics | Chapter: Optics  
Keywords: dislocations, acoustic quality factor, Raman light scattering, lithium niobate, stoichiometry

The paper investigates quasielastic light scattering spectra at a temperature of 296 K in lithium niobate samples of various degrees of imperfection as measured by means of the acoustic quality factor. We performed a quantitative spectrum analysis in the 0--70 cm-1 frequency range for samples with different Q-factor values in a model accounting for the connection between a low-frequency optical mode of the A1(TO) symmetry type and the acoustic density of states observed in a spectrum as a result of violating the wavevector selection rule in a stoichiometrically defective crystal. The results of comparing these simulations to experimental data show that stoichiometrical defects significantly contribute to the quasielastic light scattering intensity in congruent lithium niobate crystals

References

[1] Wong K.K. Properties of lithium niobate. INSPEC, 2002.

[2] Günter P., Huignard J.-P. (eds). Photorefractive materials and their applications 1. Springer Series in Optical Sciences, vol. 113. New York, NY, Springer, 2006. DOI: 10.1007/b106782

[3] Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction, and ferroelectric switching. Springer Series in Materials Science, vol. 115. Berlin, Heidelberg, Springer, 2009. DOI: https://doi.org/10.1007/978-3-540-70766-0

[4] Sidorov N.V., Volk T.R., Mavrin B.N., et al. Niobat litiya: defekty, fotorefraktsiya, kolebatelnyy spektr, polyaritony [Lithium niobate: defects, photorefraction, vibration spectrum, polaritons]. Moscow, Nauka Publ., 2003.

[5] Vladimirtsev Yu.V., Golenishchev-Kutuzov V.A. Change of ultrasound waves speed in lithium niobate, induced by light. FTT, 1980, vol. 22, no. 1, pp. 217–218 (in Russ.).

[6] Golenishchev-Kutuzov V.A., Glebova N.N., Migachev S.A., et al. Contribution of paramagnetic ions to acoustic and optical properties of ferroelectrics. Ferroelectrics, 1985,vol. 64, no. 1, pp. 209–214. DOI: 10.1080/00150198508018722

[7] Li-jie, Dransfeld K. The effect of laser illumination on the propagation of ultrasonic waves in single crystalline lithium niobate. Condensed Matter., 1987, vol. 68, iss. 2, pp. 169–174. DOI: 10.1007/BF01304222

[8] Akhmedzhanov F., Juraev F. Attenuation of acoustic waves in lithium niobate crystals with impurities. Attenuation of acoustic waves in lithium niobatecrystals with impurities. Proc. Acoustics 2012 Nantes Conf., 2012. Art. hal-00811325.

[9] Kuzminov Yu.S. Elektroopticheskiy i nelineyno-opticheskiy kristall niobata litiya [Electro-optical and nonlinear optical crystal lithium niolate]. Moscow, Nauka, 1987.

[10] Sidorov N.V., Teplyakova N.A., Yanichev A.A., et al. Structure and optical properties of LiNbO3:ZnO (3.43–5.84 mol %) crystals. Inorg. Mater., 2017, vol. 53, iss. 5, pp. 489−495. DOI: 10.1134/S002016851705017X

[11] Gilson T.R., Hendra P.J. Laser Raman spectroscopy. Wiley, 1970.

[12] Chaplot S.L., Rao K.R. Lattice dynamics of LiNbO3 and KNbO3. J. Phys. C: Solid State Phys., 1980, vol. 13, no. 5, pp. 747–756. DOI: 10.1088/0022-3719/13/5/007

[13] Parlinski K., Li Z.Q., Kawazoe Y. Ab initio calculations of phonons in LiNbO3. Phys. Rev. B, 2000, vol. 61, iss. 1, pp. 272–278. DOI: 10.1103/PhysRevB.61.272

[14] Caciuc V., Postnikov A.V., Borstel G. Ab initio structure and zone-center phonons in LiNbO3. Phys. Rev. B, 2000, vol. 61, iss. 13, pp. 8806–8813. DOI: 10.1103/PhysRevB.61.8806

[15] Surovtsev N.V., Malinovskii V.K., Pugachev A.M., et al. The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate. Phys. Solid State, 2003, vol. 45, iss. 3, pp. 534–541. DOI: 10.1134/1.1562243

[16] Sidorov N.V., Kruk A.A., Yanichev A.A., et al. Temperature investigations of Raman spectra of stoichiometric and congruent lithium niobate crystals. Opt. Spectrosc., 2014, vol. 117, iss. 4, pp. 560–571. DOI: 10.1134/S0030400X14100208

[17] Okamoto Y., Wang Pin-chu, Scott J.F. Analysis of quasielastic light scattering in LiNbO3 near TC. Phys. Rev. B, 1985, vol. 32, iss. 10, pp. 6787–6792. DOI: 10.1103/PhysRevB.32.6787

[18] Anikiev A.A., Gorelik V.S., Umarov B.S. Combined light scattering on acoustic biphonons in lithium niobate. Preprint FIAN SSSR, 1984, no. 154 (in Russ.).

[19] Anikjev A.A. One- and two-phonon density of states in lithium niobate crystals. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 7 (19) (in Russ.). DOI: 10.18698/2308-6033-2013-7-837

[20] Chowdhury N.R., Peckham J.E., Saunderson D.H. A neutron inelastic scattering study of LiNbO3. J. Phys. C: Solid State Phys., 1978, vol. 11, no. 8, pp. 1671–1684. DOI: 10.1088/0022-3719/11/8/029

[21] Sidorov N.V., Yanichev A.A., Palatnikov M.N., et al. Effects of the ordering of structural units of the cationic sublattice of LiNbO3:Zn crystals and their manifestation in Raman spectra. Opt. Spectrosc., 2014, vol. 116, iss. 2, pp. 281–290. DOI: 10.1134/S0030400X14010202

[22] Sidorov N.V., Palatnikov M.N. Raman spectra of lithium niobate crystals heavily doped with zinc and magnesium. Opt. Spectrosc., 2016, vol. 121, iss. 6, pp. 842–850. DOI: 10.1134/S0030400X16120225

[23] Krivoglaz M.A. Teoriya rasseyaniya rentgenovskikh luchey i teplovykh neytronov v neidealnykh kristallakh [X-ray and thermal neutrons scattering theory in imperfect crystals]. Moscow, Nauka Publ., 1967.

[24] Jackle J. Low frequency Raman scattering in glasses. In: Phillips W.A. (eds). Amorphous solids: low-temperature properties. Topics in Current Physics, vol. 24, pp. 135−160. Berlin, Heidelberg, Springer, 1981. DOI: https://doi.org/10.1007/978-3-642-81534-8_8

[25] Feder J. Local properties at phase transition. North-Holland, 1976.

[26] Bruce A.D., Cowley R.A. Structural phase transitions III. Critical dynamics and quasi-elastic scattering. Adv. Phys., 1980, vol. 29, no. 1, pp. 219–321. DOI: 10.1088/0022-3719/16/21/012