|

Electromagnetic waves in metamаterials placed in the magnetic field

Authors: Gorelik V.S., Pyatyshev A.Yu.  Published: 16.02.2016
Published in issue: #1(64)/2016  
DOI: 10.18698/1812-3368-2016-1-36-44

 
Category: Physics | Chapter: Physics and Technology of Nanostructures, Nuclear and Molecular Physics  
Keywords: electromagnetic waves, metamaterial, photon, axion, conversion

In this paper the results of theoretical investigations of optical metamaterials placed in an uniform magnetic field are presented. The equations of electromagnetic dispersion curves for metamaterials have been obtained taking into account interaction between electromagnetic emission and axion waves having pseudoscalar polarization. It is shown that there is a band-gap having the spectral width compared with the axion rest energy in the spectral region corresponding to the optical negative index. Near the boundaries of photon-axion zone an abnormal decrease in group velocity of electromagnetic and axion waves improving the photon-axion conversion is predicted.

References

[1] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Letters, 1987, vol. 58, iss. 20, pp. 2059-2062.

[2] John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Letters, 1978, vol. 58, iss. 23, pp. 2486-2506.

[3] Astratov V.N., Bogomolov V.N., Kaplyanskii A.A., Prokofiev A.V., Samoilovich L.A., Samoilovich S.M., Vlasov Yu.A. Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic band gap effects. Nuovo Cimento, 1995, vol. 17D, iss. 11-12, pp. 1349-1354.

[4] Bogomolov V.N., Gaponenko S.V., Kapitonov A.M., Prokofiev A.V., Ponyavina A.N., Silvanovich N.I., Samoilovich S.M. Photonic band gap in the visible range in a threedimensional solid state lattice. Applied Physics A, 1996, vol. 63, iss. 6, pp. 613-616.

[5] Smith D.R., Pendry J.B., Wiltshire M.C.K. Metamaterials and Negative Refractive. Index. Science, 2004, vol. 305, pp. 788-792.

[6] Veselago V.G. Electrodynamics of materials with negative index of refraction Phys. Usp., 2003, vol. 46, no. 7, pp. 764-768. DOI: 10.1070/PU2003v046n07ABEH001614

[7] Pendry J.B., Smith D.R. Reversing light with negative refraction. Physics Today, 2004, vol. 57, no. 6, pp. 37-43.

[8] Van Bibber K., Dagdeviren N.R., Koonin S.E., Kerman A.K., Nelson H.N. Proposed experiment to produce and detect light pseudoscalars. Phys. Rev. Letters, 1987, vol. 59, iss. 7, p. 759-762.

[9] Duffy L.D., Sikivie P., Tanner D.B., Asztalos S.J., Hagmann C., Kinion D., Rosenberg L.J., Van Bibber K., Yu D.B., Bradley R.F. High resolution search for dark-matter axions. Phys. Rev. D., 2006, vol. 74, iss. 1, pp. 012006-1-012006-11.

[10] Sikivie P., Tanner D.B., Van Bibber K. Resonantly Enhanced Axion-Photon Regeneration. Phys. Rev. Letters, 2007, vol. 98, iss. 17, pp. 172002-172006.

[11] Afanasev A., Baker O.K., Beard K.B., Biallas G., Boyce J., Minarni M., Ramdon R., Shinn M., Slocum P. Experimental Limit on Optical-Photon Coupling to Light Neutral Scalar Bosons. Phys. Rev. Letters, 2008, vol. 101, iss. 12, pp. 120401-1120401-10.

[12] Okun’ L.B. Limits on electrodynamics: paraphotons? Journal of Experimental and Theoretical Physics, 1982, vol. 56, no. 3, pp. 502-505.

[13] Hoffmann S. Paraphotons and axions: Similarities in stellar emission and detection. Phys. Letters B., 1987, vol. 193, iss. 1, pp. 117-122.

[14] Ruoso G., Cameron R., Cantatore G., Melissinos A., Semertzidis Y., Halama H., Lazarus D., Prodell A., Nezrick F., Rizzo C., Zavattini E. Limits on Light Scalar and Pseudoscalar Particles from a Photon Regeneration Experiment. Zeitschrift fur Physik C: Particles and Fields, 1991, vol. 56, pp. 505-508.

[15] Cameron R., Cantatore G., Melissinos A.C., Ruoso G., Semertzidis Y., Halama H.J., Lazarus D.M., Prodell A.G., Nezrick F., Rizzo C., Zavattini E. Search for nearly massless. Weakly coupled particles by optical techniques. Phys. Rev. D., 1993, vol. 47, iss. 9, pp. 3707-3725.

[16] Agranovich V.M., Ginzburg V.L. Crystal optics with spatial dispersion and excitons. Berlin, Springer-Verlag, 1984.

[17] Sivukhin D.V. The energy of electromagnetic waves in dispersive media. Optika i spektroskopiya [Optics and Spectroscopy], 1957, vol. 3, iss. 4, pp. 308-312 (in Russ.).

[18] Agranovich V.M., Ginzburg V.L. Theory of Raman scattering of light with formation of polaritons (real excitons). Soviet Physics Jetp, 1972, vol. 34, no. 3, pp. 662-667.

[19] Hoffmann C., Lefloch F., Sanquer M. Mesoscopic transition in the shot noise of diffusive superconductor-normal-metal-superconductor junctions. Phys. Rev. B., 2004, vol. 70, iss. 18, pp. 180503(R)-180503-4.

[20] Beck C. Possible Resonance Effect of Axionic Dark Matter in Josephson Junctions. Phys. Rev. Letters, 2013, vol. 111, iss. 23, pp. 231801-1-231801-5.

[21] Gorelik V.S., Pyatyshev A.Yu. Dispersion dependences for polariton-axion waves in tryptophan crystals. Bulletin of the Lebedev Physics Institute, 2014, vol. 41, iss. 11, pp. 18-27, pp. 316-322. DOI: 10.3103/S1068335614110037