|

Simulation of the Spectra of the Transverse Kerr Effect of Magnetic Nanocomposites FeCoZr−Al2O3

Authors: Yashin M.M., Yurasov A.N., Ganshina E.A., Garshin V.V., Semenova D.V., Mirzokulov Kh.B. Published: 08.10.2019
Published in issue: #5(86)/2019  
DOI: 10.18698/1812-3368-2019-5-63-72

 
Category: Physics | Chapter: Physics and Technology of Nanostructures, Nuclear and Molecular Physics  
Keywords: magnetic nanocomposite, the transverse Kerr effect, the dependence of the spectral method the Maxwell --- Garnett effective medium size effect

The magneto-optical properties of magnetic nanocomposites have been studied in the study of spectral dependences of the transverse Kerr effect (TKE). Experimental preparation of nanocomposites formed from FeCoZr and Al2O3 alloys at different component concentrations by ion-beam sputtering is discussed. Discuss various methods of the theoretical study of nanocomposites depending on the concentration of ferromagnetic components. The spectral dependences of TKE at low concentrations of the metal component are investigated. Spectral dependences of the Kerr transverse effect are simulated in the framework of the TKE are compared taking into account the size effect at different values of the nanocomposite granule size. There is a good qualitative and quantitative agreement between experimental and theoretical spectral dependences of TKE. In addition, in this paper, we note both practical and fundamental importance of the results. The possibilities of using such nanocomposite materials are discussed

References

[1] Foster L.E. Nanotechnology: science, innovation, and opportunity. Prentice Hall, 2005.

[2] Alfimova M.M. Zanimatelnye nanotekhnologii [Entertaining nanotechnologies]. Moscow, Binom Publ., 2015.

[3] Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnologies]. Moscow, Fizmatlit Publ., 2009.

[4] Vyzulin S.A., Gorobinskii A.V., Kalinin Yu.E., et al. Ferromagnetic resonance, magnetic properties, and resistivity of (CoFeZr)x (Al2O3)1 -- x /Si multilayer nanostructures. Bull. Russ. Acad. Sci. Phys., 2010, vol. 74, iss. 10, pp. 1380--1382. DOI: https://doi.org/10.3103/S1062873810100151

[5] Gan’shina E.A., Vashuk M.V., Vinogradov A.N., et al. Evolution of the optical and magnetooptical properties of amorphous metal-insulator nanocomposites. J. Exp. Theor. Phys., 2004, vol. 98, iss. 5, pp. 1027--1036. DOI: https://doi.org/10.1134/1.1767571

[6] Balabanov V.I. Nanotekhnologii. Nauka budushchego [Nanotechnologies. Science of the future]. Moscow, Eksmo Publ., 2009.

[7] Mikhaylov M.D. Sovremennye problemy materialovedeniya. Nanokompozitnye materialy [Modern problems of materials science. Nanocomposite materials.]. St. Petersburg, SPbGPU Publ., 2010.

[8] Aleshnikov A.A., Kalinin Yu.E., Sitnikov A.V., et al. Magnetic properties of multilayer structures based on (Co45Fe45Zr10)X(Al2O3)100 -- X nanocomposites. Perspektivnye materialy, 2012, no. 5, pp. 68--75 (in Russ.).

[9] Yurasov A.N., Yashin M.M. The effective medium theory as a tool for analyzing the optical properties of nanocomposites. Rossiyskiy tekhnologicheskiy zhurnal [Russian Technological Journal], 2018, vol. 6, no. 2, pp. 56--66 (in Russ.).

[10] Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen Ann. Phys., 1935, vol. 416, iss. 8, pp. 665--679. DOI: https://doi.org/10.1002/andp.19354160802

[11] Granovsky A., Kuzmichev M., Clerc J.P. The symmetrised Maxwell --- Garnett approximation for magneto-optical spectra of ferromagnetic composites. J. Magn. Soc. Japan, 1999, vol. 23, pp. 382--386.

[12] Dodge M.J. Refractive Index. In: Handbook of laser science and technology. Vol. IV. Optical materials. P. 2. CRC Press, 1986.

[13] Buravtsova V., Gan’shina E., Lebedeva E., et al. The features of TKE and FMR in nanocomposites-semiconductor multilayers. SSP, 2011, vol. 168--169, pp. 533--536. DOI: https://doi.org/10.4028/www.scientific.net/SSP.168-169.533

[14] Khanikaev A., Granovskii A., Clerc J.P. Influence of the size distribution of granules and of their attractive interaction on the percolation threshold in granulated alloys. Phys. Solid State, 2002, vol. 44, iss. 9, pp. 1611--1613. DOI: https://doi.org/10.1134/1.1507232

[15] Landau L.D., Lifshits E.M. Kurs teoreticheskoy fiziki. T. 8. Elektrodinamika sploshnykh sred [Course of theoretical physics. Vol. 8. Electrodynamics of continuous media]. Moscow, Nauka Publ., 2017.

[16] Yurasov A.N. About distribution on the granule size in nanocomposites. Rossiyskiy tekhnologicheskiy zhurnal [Russian Technological Journal], 2016, no. 1 (10), pp. 25--27 (in Russ.).

[17] Vedyaev A.V., Granovskii A.B., Kalitsev A.V., et al. Anomalous Hall effect in granular alloys. J. Exp. Theor. Phys., 1997, vol. 85, iss. 6, pp. 1204--1210. DOI: https://doi.org/10.1134/1.558394

[18] Ganshina E., Granovsky A., Gushin V., et al. Optical and magneto-optical spectra of magnetic granular alloys. Physica A, 1997, vol. 241, iss. 1--2, pp. 45--51. DOI: https://doi.org/10.1016/S0378-4371(97)00057-5

[19] Chaplygin Yu.A., ed. Nanotekhnologii v elektronike [Nanotechnologies in electronics]. Moscow, Tekhnosfera Publ., 2016.

[20] Erlikh G. Malye ob”ekty -- bolshie idei. Shirokiy vzglyad na nanotekhnologii [Small objects are big ideas. A broad view of nanotechnology]. Moscow, Binom Publ., 2012.