Stopping Power of Alpha Particles in Helium Gas
Authors: Hiwa M.Q. | Published: 27.04.2020 |
Published in issue: #2(89)/2020 | |
DOI: 10.18698/1812-3368-2020-2-117-125 | |
Category: Physics | Chapter: Physics and Technology of Nanostructures, Nuclear and Molecular Physics | |
Keywords: range of alpha particle, detector in vacuum chamber, helium gas medium, energy resolution, Bethe theory |
The stopping power and the range of alpha particles emitted from Am-241 source has been investigated in helium gas at different pressures of 0 to 1 bar, using surface barrier silicon detector in the large vacuum chamber. The energy loss has also been obtained at variable distances from 2 to 8 cm. It is observed that as the pressure in a large vacuum chamber increases, the energy loss of the alpha particle decreases. The measured energy loss of alpha particles at lower pressure of 0 bar is less, but at higher pressure of 1 bar is more. As expected from Bethe --- Bloch formula, the stopping power of charged particle in helium gas at different pressure was found to increase significantly when pressure is increased. The measured value of stopping power and range were compared with SRIM and theoretical value. The experimental value of stopping power and range was found to be very close to the SRIM and theoretical value. Then, the measured value of range was compared with experimental using the Bragg --- Kleeman's rule
References
[1] Khiem L.H., Trong T.D., Nghia N.T. Stopping powers of alpha particles in some gases at energies from 1.0 to 6 MeV. Commun. Phys., 2014, vol. 24, no. 3S2, pp. 8--12. DOI: https://doi.org/10.15625/0868-3166/24/3S2/8142
[2] Demir B., Sarpun I., Kaplan A., et al. Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50, 52Cr. J. Fusion Energ., 2015, vol. 34, iss. 4, pp. 808--816. DOI: https://doi.org/10.1007/s10894-015-9889-4
[3] Marcu E., Bezak E., Allen B. Biomedical physics in radiotherapy for cancer. Csiro, 2012.
[4] Devendrappa M., Mathad R., Sannakki B. Determination of energy loss, range and stopping power of light ions using silicon surface barrier detector. Int. J. Sci. Technol. Manage., 2015, vol. 4, no. 1, pp. 1654--1659.
[5] He B., Wang J.-G. Stopping power for alpha particles in hot dense Au plasmas. Nucl. Fusion, 2013, vol. 53, no. 9, art. 093009. DOI: https://doi.org/10.1088/0029-5515/53/9/093009
[6] Amable A.K.S., Godsway B.K., Nyaaba R.A., et al. A theoretical study of stopping power and range for low energy (< 3.0 meV) protons in aluminium, germanium, lead, gold and copper solid materials. OSJ, 2017, vol. 2, no. 2, pp. 1--17. DOI: https://doi.org/10.23954/osj.v2i2.982
[7] El-Ghossain M.O. Calculations of stopping power, and range of electrons interaction with different material and human body parts. IJSTR, 2017, vol. 6, no. 1, pp. 114--118.
[8] Pressney I., Saifuddin A. Musculoskeletal imaging techniques. In: Paschos N., Bentley G. (eds). General Orthopaedics and Basic Science. Orthopaedic Study Guide Series. Cham, Springer, 2019, pp. 165--182. DOI: https://doi.org/10.1007/978-3-319-92193-8_20
[9] Casarett G.W. Radiation histopathology. CRC Press, 2019.
[10] L’Annunziata M.F. Radioactivity introduction and history. Elsevier, 2007.
[11] Tinsley T., Sarsfield M., Stephenson K., et al. Progress and future roadmap on 241Am production for use in radioisotope power systems. IEEE Aerospace Conf., 2019. DOI: https://doi.org/10.1109/AERO.2019.8741817
[12] Mittal V., Verma R., Gupta S. Introduction to nuclear and particle physics. PHI Learning, 2018.
[13] Smith F.A. A primer in applied radiation physics. World Scientific, 2000.
[14] Xiao G., Saunders D., Jones R.L., et al. Determination of 241Am in urine using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). J. Radioanal. Nucl. Chem., 2014, vol. 301, iss. 1, pp. 285--291. DOI: https://doi.org/10.1007/s10967-014-3103-4
[15] Gauthier M., Blancard C., Chen S.N., et al. Stopping power modeling in warm and hot dense matter. High Energ. Dens. Phys., 2013, vol. 9, iss. 3, pp. 488--495. DOI: https://doi.org/10.1016/j.hedp.2013.03.006
[16] Younis T.A.J., Hady F.M. Calculation of the stopping power of alpha particles and its range in bone tissue. IJRG, 2019, vol. 7, no. 4, pp. 315--320. DOI: https://doi.org/10.5281/zenodo.2667683
[17] Devendrappa M., Sannakki B. Energy loss and straggling of alpha particles. IJPAP, 2018, vol. 56, no. 8, pp. 609--612.
[18] Tan Z., Xia Y. Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20--20,000 eV. Appl. Radiat. Isot., 2012, vol. 70, iss. 1, pp. 296--300. DOI: https://doi.org/10.1016/j.apradiso.2011.08.012
[19] Souza R.M., Costa-Felix R.P.B., Alvarenga A.V. Attenuation coefficient variation as a function of temperature in a cortical bone phantom. In: Costa-Felix R., Machado J., Alvarenga A. (eds). XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proc., vol. 70/1. Singapore, Springer, 2019, pp. 807--810. DOI: https://doi.org/10.1007/978-981-13-2119-1_125
[20] Luhr A., Toftegaard J., Kantemiris I., et al. Stopping power for particle therapy: the generic library libdEdx and clinically relevant stopping-power ratios for light ions. Int. J. Radiat. Biol., 2012, vol. 88, iss. 1-2, pp. 209--212. DOI: https://doi.org/10.3109/09553002.2011.595877
[21] Hiwa M., Ari M. Investigation of long and short term irradiation hardening of P91 and P92 ferritic/martensitic steels. Probl. Atom. Sci. Technol. Ser. Thermonucl. Fusion, 2019, vol. 42, no. 2, pp. 81--88. DOI: https://doi.org/10.21517/0202-3822-2019-42-2-81-88
[22] Ziegler J.F., Ziegler M.D., Biersack J.P. SRIM -- the stopping and range of ions in matter (2010). Nucl. Instrum. Meth. B, 2010, vol. 268, iss. 11-12, pp. 1818--1823. DOI: https://doi.org/10.1016/j.nimb.2010.02.091
[23] Blum W., Riegler W., Rolandi L. Particle detection with drift chambers. Particle Acceleration and Detection. Berlin, Heidelberg, Springer, 2008. DOI: https://doi.org/10.1007/978-3-540-76684-1
[24] Hamad A.M., Qadr H.M. Gammarays spectroscopy by using a thallium activated sodium iodide NaI (Ti). EAJSE, 2018, vol. 4, no. 1, pp. 99--111. DOI: https://doi.org/10.23918/eajse.v4i1sip99
[25] Mohammad Q., Maghdid H. Alpha-particle stopping powers in air and argon. RRJPAP, 2017, vol. 5, no. 4, pp. 22--28.
[26] Northcliffe L.C., Schilling R.F. Range and stopping-power tables for heavy ions. At. Data Nucl. Data Tables, 1970, vol. 7, no. 3-4, pp. 233--463. DOI: https://doi.org/10.1016/S0092-640X(70)80016-X
[27] Krim M., Harakat N., Khouaja A., et al. Method for range calculation based on empirical models of proton in liquid water: validation study using Monte-Carlo method and ICRU data. IJSER, 2017, vol. 8, no. 3, pp. 728--735.
[28] De Podesta M. Understanding the properties of matter. CRC Press, 2002.