|

Synthesing and Studying the Structure of Nanoscale Copper (II) Oxide Stabilized by Polyethylene Glycol

Authors: Blinov A.V., Gvozdenko А.А., Yasnaya М.А., Blinova А.А., Kravtsov A.A., Krandievsky S.O. Published: 08.06.2020
Published in issue: #3(90)/2020  
DOI: 10.18698/1812-3368-2020-3-56-70

 
Category: Physics | Chapter: Physics and Technology of Nanostructures, Nuclear and Molecular Physics  
Keywords: copper (II) oxide, polyethylene glycol, hydrodynamic radius, X-ray diffraction analysis, microstructure, quantum chemical simulation

We developed a method for synthesising polyethylene glycol-stabilized copper oxide nanoparticles via a sol-gel process, obtained samples and investigated their structure, morphology and properties. We used photon correlation spectroscopy to establish that the copper oxide nanoparticles feature a monomodal size distribution with the average hydrodynamic radius of a particle being approximately 50 nm irrespective of the stabiliser molar mass. We detected an optical absorption band at 290 nm in all samples. We established that copper oxide samples consist of aggregates formed out of spherical nanoparticles whose diameters lie in the range of 10 to 30 nm. Phase composition analysis of the copper oxide samples revealed that the samples consist of particles featuring a monoclinic structure. We simulated the process of polyethylene glycol interacting with the copper oxide. We show that the most energetically favourable interaction model includes bond formation between the neighbouring intramolecular etheric oxygen atoms and the copper atom

The study was supported by the Grant Council under the President of the Russian Federation (project SP-1191.2019.4)

References

[1] Ahmadi S.J., Outokesh M., Hosseinpour M., et al. A simple granulation technique for preparing high-porosity nano copper oxide (II) catalyst beads. Particuology, 2011, vol. 9, iss. 5, pp. 480--485. DOI: https://doi.org/10.1016/j.partic.2011.02.010

[2] Shalan A.E., Rashad M.M., Yu Y., et al. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells. Electrochim. Acta, 2013, vol. 89, pp. 469--478. DOI: https://doi.org/10.1016/j.electacta.2012.11.091

[3] Yu X., Marks T.J., Facchetti A. Metal oxides for optoelectronic applications. Nat. Mater., 2016, vol. 15, no. 4, pp. 383--396. DOI: https://doi.org/10.1038/nmat4599

[4] Perng D.-C., Hong M.-H., Chen K.-H., et al. Enhancement of short-circuit current density in Cu2O/ZnO heterojunction solar cells. J. Alloy. Compd., 2017, vol. 695, pp. 549--554. DOI: https://doi.org/10.1016/j.jallcom.2016.11.119

[5] Ramgir N., Datta N., Kaur M., et al. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf. A Physicochem. Eng. Asp., 2013, vol. 439, pp. 101--116. DOI: https://doi.org/10.1016/j.colsurfa.2013.02.029

[6] Jang J., Kitsomboonloha R., Swisher S.L., et al. Transparent high-performance thin film transistors from solution-processed SnO2/ZrO2 gel-like precursors. Adv. Mater., vol. 25, iss. 7, pp. 1042--1047. DOI: https://doi.org/10.1002/adma.201202997

[7] Gupta D., Meher S.R., Illyaskutty N., et al. Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties. J. Alloy. Compd., 2018, vol. 743, pp. 737--745. DOI: https://doi.org/10.1016/j.jallcom.2018.01.181

[8] Keimer B., Kivelson S.A., Norman M.R., et al. From quantum matter to high-temperature superconductivity in copper oxides. Nature, 2015, vol. 518, no. 7538, pp. 179--186. DOI: https://doi.org/10.1038/nature14165

[9] Jang J., Chung S., Kang H., et al. P-type CuO and Cu2O transistors derived from a sol-gel copper (II) acetate monohydrate precursor. Thin Solid Films, 2016, vol. 600, pp. 157--161. DOI: https://doi.org/10.1016/j.tsf.2016.01.036

[10] Moiseeva T.A., Myasoedova T.N., Petrov V.V., et al. Development of gas sensitive element based on copper oxides films for ammonia detection. Inzhenernyy vestnik Dona [Engineering Journal of Don], 2012, no. 4-2 (in Russ.). Available at: http://ivdon.ru/ru/magazine/archive/n4p2y2012/1347

[11] Breedon M., Zhuiykov S., Miura N. The synthesis and gas sensitivity of CuO microdimensional structures featuring a stepped morphology. Mater. Lett., 2012, vol. 82, pp. 51--53. DOI: https://doi.org/10.1016/j.matlet.2012.05.024

[12] Gul’chenko S.I., Gusev A.A., Zakharov O.V. Prospects for creation antibacterial preparations based on copper nanoparticles. Vestnik Tambovskogo universiteta. Ser. Estestvennye i tekhnicheskie nauki [Tambov University Reports. Series Natural and Technical Sciences], 2014, vol. 19, no. 5, pp. 1397--1399 (in Russ.).

[13] Javed R., Ahmed M., Haq I. ul, et al. PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater. Sci. Eng. C, 2017, vol. 79, pp. 108--115. DOI: https://doi.org/10.1016/j.msec.2017.05.006

[14] Jadhav S., Gaikwad S., Nimse M., et al. Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Clust. Sci., 2011, vol. 22, iss. 2, pp. 121--129. DOI: https://doi.org/10.1007/s10876-011-0349-7

[15] Etefagh R., Azhir E., Shahtahmasebi N. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica, 2013, vol. 20, no. 3, pp. 1055--1058.

[16] Arsent’yeva I.P., Zotova E.S., Folmanis G.E., et al. Certification and use of metal nanoparticles as biological active preparations. Nanotekhnika, spec. iss. Nanotekhnologii v meditsine, 2007, pp. 72--77 (in Russ.).

[17] Sankar R., Maheswari R., Karthik S., et al. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater. Sci. Eng. C, 2014, vol. 44, pp. 234--239. DOI: https://doi.org/10.1016/j.msec.2014.08.030

[18] Wang H., Xu J.-Z., Zhu J.-J., et al. Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth, 2002, vol. 244, iss. 1, pp. 88--94. DOI: https://doi.org/10.1016/s0022-0248(02)01571-3

[19] Hosny N.M., Zoromba M.S. Polymethacrylic acid as a new precursor of CuO nanoparticles. J. Mol. Struct., 2012, vol. 1027, pp. 128--132. DOI: https://doi.org/10.1016/j.molstruc.2012.05.081

[20] Agarwal R., Verma K., Agrawal N.K., et al. Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl. Therm. Eng., 2016, vol. 102, pp. 1024--1036. DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.051

[21] Kayani Z.N., Ali Y., Kiran F., et al. Fabrication of copper oxide nanoparticles by sol-gel route. Mater. Today Proc., 2015, vol. 2, iss. 10, part B, pp. 5446--5449. DOI: https://doi.org/10.1016/j.matpr.2015.11.067

[22] Padil V.V., Cernik M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine, 2013, vol. 8, iss. 1, pp. 889--898. DOI: https://doi.org/10.2147/ijn.s40599

[23] Salavati-Niasari M., Davar F. Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater. Lett., 2009, vol. 63, iss. 3-4, pp. 441--443. DOI: https://doi.org/10.1016/j.matlet.2008.11.023

[24] Avchinnikova E.A., Vorobyeva S.A. Synthesis and properties of copper nanoparticles stabilized by polyethylene glycol. Vestnik BGU. Seriya 2: Khimiya. Biologiya. Geografiya [Vestnik BSU. Series 2: Chemistry. Biology. Geography], 2013, no. 3, pp. 12--16 (in Russ.).