Computing Radiative Parameters for the CsLi+ and LiK+ Molecular Ions
Authors: Smirnov A.D. | Published: 27.09.2017 |
Published in issue: #5(74)/2017 | |
DOI: 10.18698/1812-3368-2017-5-67-77 | |
Category: Physics | Chapter: Plasma Physics | |
Keywords: Potential energy curve, radial wave equation, oscillator strength, radiative lifetime of the excited state, Franck — Condon factors, einstein coefficients |
We computed radiative parameters (Einstein coefficient, absorption oscillator strength, Franck --- Condon factors, vibronic transition wavenumbers in (2)2Σ+−X2Σ+ band systems) for the CsLi+ (0 < v" < 15, 0 < v" < 51) and LiK+ (0 < v' < 15, 0< v" < 46) molecular ions, plus radiative lifetimes of excited electron states. We conducted our calculations based on potential energy curves plotted in our work. We solved the radial wave equation numerically in order to determine the vibrational energies and corresponding wavefunctions required for the computation. This is the first time that these radiative parameters and lifetimes were computed
References
[1] Lang F., Winkler K., Strauss C., Grimm R., Densсhlag J.K. Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 2008, vol. 101, iss. 13, pp. 133005–133009. DOI: 10.1103/PhysRevLett.101.133005
[2] Mark M.J., Danzl J.G., Haller E., Gustavsson M., Bouloufa N., Dulieu O., Salami H., Bergeman T., Ritsch H., Hart R., Nagerl H.C. Dark resonances for ground state transfer of molecular quantum gases. Appl. Phys. B., 2009, vol. 95, iss. 2, pp. 219–225. DOI: 10.1007/s00340-009-3407-1
[3] Aikawa K., Akamatsu D., Hayashi M., Oasa K., Kobayashi J., Naidon P., Kishimoto T., Ueda M., Inouye S. Coherent transfer of photoassociated molecules in to the rovibrational ground state. Phys Rev. Lett., 2010, vol. 105, iss. 20, pp. 203001–203005. DOI: 10.1103/PhysRevLett.105.203001
[4] Smirnov A.D. Calculation of radiative parameters A1Sigma+u-X1Sigma+g for the transition of cesium dimer. Journal of Applied Spectroscopy, 2010, vol. 77, no. 5, pp. 609–614. DOI: 10.1007/s10812-010-9375-8
[5] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for A1Sigma+u-X1Sigma+g and B1Пu-X1Sigma+g. Optics and Spectroscopy, 2010, vol. 109, no. 5, pp. 680–686. DOI: 10.1134/S0030400X10110068
[6] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for the A1Sigma+u-X1Sigma+g and B1Пu-X1Sigma+g electronic transitions of the lithium dimer. Optics and Spectroscopy, 2012, vol. 113, no. 4, pp. 345–352. DOI: 10.1134/S0030400X12080176
[7] Smirnov A.D. Calculation of radiative parameters for A1Sigma+u-X1Sigma+g and B1Пu-X1Sigma+g electronic transitions of potassium dimer. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 67–85 (in Russ.).
[8] Smirnov A.D. Energy and radiation properties of the electronic transition of the cesium and rubidium dimers. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 6. (in Russ.). DOI: 10.18698/2308-6033-2013-6-790 Available at: http://engjournal.ru/catalog/fundamentals/physics/790.html
[9] Smirnov A.D. Calculation of radiative parameters for alkali-dimer cations of lithium, sodi-um and potassium. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 4, pp. 45–56 (in Russ.). DOI: 10.18698/1812-3368-2015-4-45-56
[10] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for the B1Пu-X1Sigma+g electronic transitions of NaK, NaRb, and NaCs molecules. Optics and Spectroscopy, 2014, vol. 117, no. 3, pp. 358–365. DOI: 10.1134/S0030400X14080244
[11] Smirnov A.D. Calculation of radiative parameters for B1Пu-X1Sigma+g electron transition of KRb molecule. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 6, pp. 52–62 (in Russ.). DOI: 10.18698/1812-3368-2015-6-52-62
[12] Fedorov V.V., Smirnov A.D. Radiative parameters calculation of A1Sigma+-X1Sigma+ for the A1Sigma+u-X1Sigma+ electronic transition of NaLi molecule. Sovremennye tendentsii razvitiya nauki i tekhnologiy. Sbornik nauchnykh trudov po materialam VI Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Ch. 3 [Current development trends of science and technology. P. 3]. 2015, pp. 35–39 (in Russ.). Available at: http://issledo.ru/wp-content/uploads/2015/01/Sbornik-6-3.pdf
[13] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for the A1Sigma+u-X1Sigma+ electronic transitions of the CsLi and CsRb molecules. Optics and Spectroscopy, 2016, vol. 121, no. 6, pp. 783–789. DOI: 10.1134/S0030400X16120237
[14] Ghanmi C., Bouzouita H., Berriche H., Ben Ouada H. Theoretical investigation on CsLi+ and CsNa+ ionic molecules. J. Molecul. Structure: THEOCHEM, 2006, vol. 777, iss. 1-3, pp. 81–86. DOI: 10.1016/j.theochem.2006.08.004
[15] Berriche H., Ghanmi C., Ben Ouada H. Theoretical study of the electronic states and transition dipole moments of the LiK+ molecule. J. Mol. Spectr., 2005, vol. 230, iss. 2, pp. 161–167. DOI: 10.1016/j.jms.2004.11.009
[16] Hulbert H.M., Hirschfelder J.O. Potential energy functions for diatomic molecules. J. Chem. Phys. 1941, vol. 9, pp. 61–69.
[17] Zulicke L. Quantenchemie. Ein Lehrgang. Band 1. Grundlagen und allgemeine methoden. Berlin, VEB Deutscher Verlag der Wissenschaften, 1973. 517 s.
[18] Kratzer A. Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys., 1920, vol. 3, pp. 289–296.
[19] Kemble E.C., Birge R.T., Colby W.F., Loomis W., Page L. Molecular spectra in gases. National Research Council, Washington, D.C., 1930. 57 p.
[20] Laher R.R., Khakoo M.A., Antic-Jovanovic A. Radiative transition parameters for the A1Sigma+u-X1Sigma+ band system of 107,109Ag2. J. Mol. Spectr. 2008, vol. 248, iss. 2, pp. 111–121. DOI: 10.1016/j.jms.2007.12.003
[21] Kuznetsova L.A., Pazyuk E.A., Stolyarov A.V. Radiative and energetic properties of diatomics (data bank). Zhurnal fizicheskoy khimii, 1993, vol. 67, no. 11, pp. 2046–2049 (in Russ.).