Estimation of effective heat conductivity of the textured composite with transverse isotropic ellipsoidal inclusions by the self-coupling method
Authors: Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. | Published: 04.09.2015 |
Published in issue: #4(61)/2015 | |
DOI: 10.18698/1812-3368-2015-4-88-101 | |
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering | |
Keywords: composite, ellipsoidal inclusions, representative structure element, effective thermal conductivity tensor, texture function |
The paper presents a mathematical model of thermal interaction between transversal isotropic inclusions of a spheroidal shape and a homogeneous medium. This model is built for estimating the effective thermal conductivity tensor components of a representative element of the composite structure containing these inclusions. Both the model and the self-coupling method allow calculating the effective thermal conductivity coefficients of a representative element. The coefficients are averaged according to the given texture function of the composite. The authors obtained some calculation correlations for the case of the conical texture including scattering. Quantitative analysis of these correlations is done. The correlations can be used for estimating the effective thermal conductivity tensor components of the textured composite with ellipsoidal inclusions (including those of both plate and needle shapes which feature some nanostructural elements).
References
[1] Kats E.A. Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaya form i idey [Fullerenes, Carbon Nanotubes and Nanoclusters. Genealogy of Forms and Ideas]. Moscow, LKI Publ., 2008. 296 p.
[2] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. London, Oxford University Press, 1959.
[3] Zarubin V.S., Kuvyrkin G.N. Effective Coefficients of Thermal Conductivity of a Composite with Ellipsoidal Inclusions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2012, no. 3, pp. 76-85 (in Russ.).
[4] Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965, vol. 13, no. 4, pp. 213-222.
[5] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [The Theory of Elasticity of Microinhomogeneous Media]. Moscow, Nauka Publ., 1977. 400 p.
[6] Pan’kov A.A. Metody samosoglasovaniya mekhaniki kompozitov [Methods of SelfConsistency in Mechanics of Composites]. Perm’, Perm. Gos. Tekh. Univ. Publ., 2008. 253 p.
[7] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. The Self-Consistent Scheme Estimation of Effective Thermal Conductivity for the Transversally Isotropic Composite with Isotropic Ellipsoidal Inclusions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 3, pp. 99-109 (in Russ.).
[8] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. The Effective Thermal Conductivity of the Composite with Inclusions in the Form of Elongated Spheroids. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2013, vol. 5, no. 6, pp. 276282 (in Russ.).
[9] Zarubin VS., Savel’eva I.Yu. Effective Thermal Conductivity Coefficients of the Composites with Spheroidal Inclusions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 4, pp. 116-126 (in Russ.).
[10] Apresyan L.A., Vlasov D.V. Factors of Anisotropic Ellipsoid Depolarization in an Anisotropic Medium. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys.], 2014, vol. 84, no. 12, pp. 23-28 (in Russ.).
[11] Stroud D. Generalized effective-medium approach to the conductivity of an inhomogeneous materials. Phys. Rev. B, 1975, vol. 12, no. 8, pp. 3368-3373.
[12] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Evaluation of effective thermal conductivity of composites with ball inclusions by the method of self-consistency. Jelektr. Nauchno-Tehn. Izd. "Nauka i obrazovanie" [El. Sc.-Tech. Publ. "Science and Education"], 2013, no. 9, pp. 435-444. URL: http://technomag.bmstu.ru/doc/601512.html (accessed: 12.09.2014). DOI: 10.7463/0913.0601512
[13] Zarubin VS., Kuvyrkin G.N. Thermal conductivity of the textured composite with anisotropic inclusions in the form of ellipsoids of rotation. Jelektr. Nauchno-Tehn. Izd. "Nauka i obrazovanie" [El. Sc.-Tech. Publ. "Science and Education"], 2013, no. 6, pp. 365-378. URL: http://technomag.bmstu.ru/doc/569312.html (accessed 12.09.2014). DOI: 10.7463/0613.0569312
[14] Adamesku R.A., Gel’d P.V., Mityushov E.A. Anizotropiya fizicheskikh svoystv metallov [Anisotropy of Metal Physical Properties]. Moscow, Metallurgiya Publ., 1985. 136 p.
[15] Pechinkin A.V., Teskin O.I., Tsvetkova G.M., ed. by Zarubin V.S., Krishchenko A.P. Teoriya veroyatnostey [Probability Theory]. Moscow, MGTU im. N.E. Baumana Publ., 2004. 456 p.