Numerical Simulation of Aluminum Particle Aerosol Combustion Employing a Probability Density Function and Two Spatial Coordinates

Authors: Romanova T.N., Yagodnikov D.A., Shchetinin G.A. Published: 05.12.2018
Published in issue: #6(81)/2018  
DOI: 10.18698/1812-3368-2018-6-75-91

Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: ignition, combustion, powdered aluminum, polydisperse aerosol, two-dimensional probability density function, mathematical model, numerical calculation, powdered aluminum

The paper considers a non-steady-state two-dimensional model employing a probability density function describing temperature distribution and particle radii to investigate two-phase reactive flows formed from polydisperse aluminum particle aerosols. Our numerical computation technique uses six- and eight-diagonal matrices and the Gaussian method adapted to those. This modification aided in making the computations orders of magnitude faster. We obtained particle state distributions in the zones of maximum heat generation and aluminum burnout for the laminar aerosol flow mode. We detected specific features of the spatial flow structure characterised by development of reverse flow zones filled with burning aluminum particles


[1] Parmuzina A.V., Kravchenko O.V., Shkolnikov E.I., et al. Research on oxidizing reaction of activated aluminium by water — a method for obtaining hydrogen. Izvestiya RAN. Ser. Khimiya [Russian Chemical Bulletin], 2009, no. 3, pp. 483--488 (in Russ.).

[2] Yagodnikov D.A., ed. Aktualnye problemy raketnogo dvigatelestroeniya [Actual problems of rocket engine technology]. Moscow, Bauman MSTU Publ., 2017. 295 p.

[3] Milekhin Yu.M., Klyuchnikov A.N., Burskiy G.V. Energetika raketnykh dvigateley na tverdom toplive [Energetics of solid-propellant rocket engine]. Moscow, Nauka Publ., 2013. 207 p.

[4] Davis A. Solid propellants: the combustion of particles of metal ingredients. Combust. Flame, 1963, vol. 7, no. 4, pp. 359–367. DOI: 10.1016/0010-2180(63)90212-8

[5] Gnanaprakash K., Chakravarthy S.R., Sarathi R. Combustion mechanism of composite solid propellant sandwiches containing nano-aluminium. Combust. Flame, 2017, vol. 182, pp. 64–75. DOI: 10.1016/j.combustflame.2017.04.024

[6] Yagodnikov D.A., Gusachenko E.I. Effect of an external electric field on the disperse composition of condensed products of aluminum particle combustion in air. Combust. Explos. Shock Waves, 2002, vol. 38, iss. 4, pp. 449–455. DOI: 10.1023/A:1016215416889

[7] Yi Chena, Guildenbechera D.R., Hoffmeistera K.N.G., Coopera M.A., Stauffachera H.L., Olivera M.S., Washburnb E.B. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry. Combust. Flame, 2017, vol. 182, pp. 225–237.

[8] Shchetinin G.A. Numerical simulation of aluminium particle aerosol combustion employing a probability density function. Politekhnicheskiy molodezhnyy zhurnal [Politechnical Student Journal], 2017, no. 11 (16) (in Russ.). DOI: 10.18698/2541-8009-2017-11-204

[9] Gavin A.B., Medvedev V.A., Naumov N.A. Model of a two-phase turbulent jet with heterogeneous particle combustion taken into account. Combust. Explos. Shock Waves, 1988, vol. 24, iss. 3, pp. 271–276. DOI: 10.1007/BF00750604

[10] Yagodnikov D.A., Voronetskii A.V. Effect of velocity nonequilibrium on the laminar flame propagation characteristics in an air-dispersed medium. Combust. Explos. Shock Waves, 1992, vol. 28, iss. 5, pp. 484–490. DOI: 10.1007/BF00755719

[11] Vilyunov V.N., Vorozhtsov A.B., Feshchenko Yu.V. Modeling of two-phase flow of a gas mixture with burning metal particles in a semienclosed channel. Combust. Explos. Shock Waves, 1989, vol. 25, iss. 3, pp. 296–300. DOI: 10.1007/BF00788801

[12] Basevich V.Y., Volodin V.P., Peregudov N.I. Determining the probability density function of the temperature by calculating a turbulent flame from the instantaneous parameters. Combust. Explos. Shock Waves, 1990, vol. 26, iss. 6, pp. 640–644. DOI: 10.1007/BF00786500

[13] Belyaev Yu.V., Bril A.P., Zhdanovich O.B., Khodyko Yu.V. Verification of model probability distributions in turbulent heated jets. Combust. Explos. Shock Waves, 1990, vol. 26, iss. 6, pp. 709–714. DOI: 10.1007/BF00786512

[14] Yagodnikov D.A. Statistical model of flame-front propagation in a boron-air mixture. Combust. Explos. Shock Waves, 1996, vol. 32, iss. 6, pp. 623–636. DOI: 10.1007/BF02111563

[15] Yagodnikov D.A. Vosplamenenie i gorenie poroshkoobraznykh metallov [Inflammation and combustion of metal powder]. Moscow, Bauman MSTU Publ., 2009. 432 p.