|

Experimental Evaluation of Thermophysical Characteristics of High-Temperature Thermal Insulation Materials

Authors: Tomak V.I., Burkov A.S., Rytsarev A.M., Tovstonog V.A. Published: 26.04.2020
Published in issue: #2(89)/2020  
DOI: 10.18698/1812-3368-2020-2-99-116

 
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: thermal conductivity, thermal diffusivity, temperature, thermal insulation materials, experimental methods, multi-nozzle torch

One of the most important problems in the development of advanced products of aerospace engineering and highly efficient power plants is to make high-temperature structural, heat-shielding and heat-insulating materials with extremely high operating temperatures of 2000--2500 °C. Even for prototype models, it is necessary to make a qualitative breakthrough in the field of materials science and the production of new high-temperature composite and heat-insulating materials which provide thermal protection and the permissible temperature conditions of structural elements at high temperatures. The practical application of the developed materials requires an evaluation of the whole body of their physicomechanical, optical, and thermophysical characteristics, which can only be done in experimental studies. We developed the design of the experimental setup and the methodology for the approximate evaluation of the thermophysical characteristics of highly porous heat-insulating materials at temperatures up to 2000 °C. A propane / oxygen or acetylene / oxygen multi-nozzle torch serves as a heating source for samples with a characteristic size of up to 50 × 50 mm. The paper substantiates the methodology for processing the measurement results in order to determine the thermophysical characteristics, and gives the results of a study of the thermal conductivity of highly porous zirconium oxide-based material

References

[1] Polezhaev Yu.V. Will there or will there not be a hypersonic airplane? J. Eng. Phys. Thermophys., 2000, vol. 73, iss. 1, pp. 3--8. DOI: https://doi.org/10.1007/BF02681670

[2] Sziroczak D., Smith H. A review of design issues specific to hypersonic flight vehicles. Prog. Aerosp. Sci., 2016, vol. 84, pp. 1--28. DOI: https://doi.org/10.1016/j.paerosci.2016.04.001

[3] Riley C.J., Kleb W.L., Alter S.J. Aeroheating predictions for X-34 using an inviscid boundary-layer method. J. Spacecr. Rockets., 1999, vol. 36, no. 2, pp. 206--215. DOI: https://doi.org/10.2514/2.3451

[4] Degtyar V.G., Son E.E. Giperzvukovye letatel’nye apparaty [Hypersonic aircraft]. Moscow, Yanus-K Publ., 2018.

[5] Kablov E.N. Strategical areas of developing materials and their processing technologies for the period up to 2030. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2012, no. S, pp. 7--17 (in Russ.).

[6] Kablov E.N., Shchetanov B.V., Ivakhneno Yu.A., et al. Carbon plastics based on benzoxazine oligomers --- perspective materials. Trudy VIAM [Proceedings of VIAM], 2013, no. 2 (in Russ.). Available at: http://viam-works.ru/ru/articles?art_id=8

[7] Sorokin O.Yu., Grashchenkov D.V., Solntsev S.S., et al. Ceramic composite materials with high oxidation resistance for the novel aircrafts (review). Trudy VIAM [Proceedings of VIAM], 2014, no. 6 (in Russ.). DOI: https://dx.doi.org/10.18577/2307-6046-2014-0-6-8-8

[8] Kats S.M. Vysokotemperaturnye teploizolyatsionnye materialy [High-temperature thermoinsulating materials]. Moscow, Metallurgiya Publ., 1981.

[9] Afanasov I.M., Lazoryak B.I. Vysokotemperaturnye keramicheskie volokna. Moscow, Lomonosov MSU Publ., 2010.

[10] Tinyakova E.V., Grashchenkov D.V. Heat insulating material based on mullite-corundum and quartz fibers. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2013, no. 3, pp. 43--46 (in Russ.).

[11] Zimichev A.M., Solov’yeva E.P. Zirconia fiber for high temperature application (review). Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2014, no. 3, pp. 55--61 (in Russ.).

[12] Balinova Yu.A., Lyulyukina G.Yu. [Fibers of zirconium dioxide: synthesis, properties and application prospects]. Sovremennye vysokotemperaturnye voloknistye teplozvukoizolyatsionnye materialy [Modern high-temperature fibrous heat insulators]. Moscow, VIAM Publ., 2017, pp. 15--30 (in Russ.).

[13] Kashcheev I.D., Demin E.N. New high temperature heat insulators. Novye ogneupory, 2012, no. 3 (in Russ.). Available at: http://www.spetsogneupor.ru/stati/stati-09-new-materiali.html (accessed: 13.11.2019).

[14] Babashov V.G., Varrik N.M. High-temperature flexible fibrous insulation material. Trudy VIAM [Proceedings of VIAM], 2015, no. 1 (in Russ.). DOI: https://dx.doi.org/10.18577/2307-6046-2015-0-1-3-3

[15] Kheyfets L.I., Neymark A.V. Mnogofaznye protsessy v poristykh sredakh [Multi-phase processes in porous medium]. Moscow, Khimiya Publ., 1982.

[16] Dul’nev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov [Heat conductivity of mixtures and composites]. Leningrad, Energiya Publ., 1974.

[17] Dul’nev G.N., Novikov V.V. Protsessy perenosa v neodnorodnykh sredakh [Transfer processes in inhomogeneous medium]. Leningrad, Energoatomizdat Publ., 1991.

[18] Platunov E.S., ed. Teplofizicheskie izmereniya i pribory [Thermal-physical measurements and devices]. Leningrad, Mashinostroenie Publ., 1986.

[19] Platunov E.S. Teplofizicheskie izmereniya v monotonnom rezhime [Thermal-physical measurements in monotonous regime]. Leningrad, Energiya Publ., 1973.

[20] Bessonov A.F. Ustanovki dlya vysokotemperaturnykh kompleksnykh issledovaniy [Plant for complex high-temperature study]. Moscow, Mashinostroenie Publ., 1974.

[21] Website of NETZSCH company. Available at: https://www.netzsch.com/en/ (accessed: 13.11.2019).

[22] Parker W.J., Jenkins R.J., Butler C.P., et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys., 1961, vol. 32, iss. 9, рp. 1679--1683. DOI: https://doi.org/10.1063/1.1728417

[23] Zhdanov V.S., Ivanov M.V., Mikheev I.V., et al. Sposob opredeleniya koeffitsienta teploprovodnosti materialov [Method for definition of thermal conductivity coefficient of materials]. Patent SU 873087. Appl. 30.11.1979, publ. 15.10.1981 (in Russ.).

[24] Kozdoba L.A., Krukovskiy P.G. Metody resheniya obratnykh zadach teploperenosa [Solving methods for inverse heat transfer problems]. Kiev, Naukova dumka Publ., 1982.

[25] Beck J.V., Blackwell B., St. Clair Ch.R. Jr. Inverse heat conduction. Ill-posed problems. Wiley-Interscience, 1985.

[26] Alifanov O.M., Artyukhin E.A., Nenarokomov A.V. Obratnye zadachi v issledovanii slozhnogo teploobmena [Inverse problems in study of complex heat exchange]. Moscow, Yanus-K Publ., 2009.

[27] Samarskiy A.A., Vabishchevich P.N. Chislennye metody resheniya obratnykh zadach matematicheskoy fiziki [Numerical methods for solving inverse problems of mathematical physics]. Moscow, LKI Publ., 2009.

[28] Krylov V.I., Tomak V.I., Yagodnikov D.A., et al. Ustroystvo dlya gazoplamennoy obrabotki obraztsov materialov [Device for flame processing of material samples]. Patent RU 2429299. Appl. 06.07.2010, publ. 20.09.2011 (in Russ.).

[29] Lykov A.V. Teoriya teploprovodnosti [Heat conductivity theory]. Moscow, Vysshaya shkola Publ., 1967.

[30] Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. Moscow, Energiya Publ., 1976.

[31] Marmer E.N., Gurvich O.S., Mal’tseva L.F. Vysokotemperaturnye materialy [High-temperature materials]. Moscow, Metallurgiya Publ., 1967.