Conditions for a Thermal Explosion in the Plate under Convective-Radiation Heat Transfer

Authors: Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu., Zhuravsky A.V. Published: 14.12.2020
Published in issue: #6(93)/2020  
DOI: 10.18698/1812-3368-2020-6-48-59

Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: thermal explosion, convective-radiation heat transfer, integral relations

The processes of obtaining and storing energy-saturated substances are characterized by energy release in their volume. The intensity of this energy release increases with increasing temperature. The stability of the stationary temperature state of a solid with a temperature-dependent intensity of volumetric energy release is directly related to the conditions of heat transfer of this body with the environment. If the heat energy released in the volume of the body can no longer be diverted into the environment, the steady temperature state of the body becomes impossible. The paper studies the conditions for a thermal explosion in a solid in the form of a plate with a temperature-dependent coefficient of thermal conductivity and convective-radiation heat transfer on its surfaces. The statement of the nonlinear problem of steady-state thermal conductivity in the plate is represented by a system of integral relations. The limits of integration of the integrals included in these relations are the desired functions and parameters which determine the temperature state of the plate. A quantitative analysis of these relationships makes it possible to establish the influence of the parameters which determine the intensity of heat transfer and the dependence of the thermal conductivity of the plate material on the conditions for a thermal explosion with an arbitrary law of variation with temperature of the volumetric power of the energy release in the plate. The results of such an analysis are presented in the framework of a one-parameter model of the stationary theory of thermal explosion

The work was carried out within the framework of the state assignment of the Ministry of Higher Education and Science of the Russian Federation (project no. FSFN-2020-0032) and within the framework of the RFBR grant (no. 19-38-90178)


[1] Fioshina M.A., Rusin M.A. Osnovy khimii i tekhnologii porokhov i tverdykh raketnykh topliv [Fundamentals of chemistry and technology of gunpowder and solid rocket fuel]. Moscow, Dmitry Mendeleev Univ. Publ., 2001.

[2] Gel’fand B.E., Sil’nikov M.V. Khimicheskie i fizicheskie vzryvy. Parametry i kontrol’ [Chemical and physical explosions. Parameters and control]. St. Petersburg, Poligon Publ., 2003.

[3] Derevich I.V., Ermolaev V.S., Mordkovich V.Z., et al. Heat and mass transfer in Fisher --- Tropsch catalist granule with localized cobalt microparticles. Int. J. Heat Mass Transf., 2018, vol. 121, pp. 1335--1349. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.077

[4] Kirillov P.L., Bogoslovskaya G.P. Teplomassoobmen v yadernykh energeticheskikh ustanovkakh [Heat and mass transfer in nuclear power plants]. Moscow, Energoatomizdat Publ., 2000.

[5] Eliseev V.N., Tovstonog V.A. Teploobmen i teplovye ispytaniya materialov i konstruktsiy aerokosmicheskoy tekhniki pri radiatsionnom nagreve [Heat transfer and thermal tests of spacecraft materials and constructions at radiation heating]. Moscow, BMSTU Publ., 2014.

[6] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Temperature state of a unipolar generator disk. J. Eng. Phys. Thermophy., 2014, vol. 87, no. 4, pp. 820--826. DOI: https://doi.org/10.1007/s10891-014-1077-2

[7] Zarubin V.S., Kotovich A.V., Kuvyrkin G.N. Temperature condition stability of the disc unipolar generator. Izvestiya RAN. Energetika [Proceedings of the RAS. Power Engineering], 2016, no. 1, pp. 127--133 (in Russ.).

[8] Vorob’yev G.A., Pokholkov Yu.P., Korolev Yu.D., et al. Fizika dielektrikov (oblast’ sil’nykh poley) [Dielectric physics (high fields area)]. Tomsk, Izd-vo TPU Publ., 2003.

[9] Frank-Kamenetskiy D.A. Diffuziya i teploperedacha v khimicheskoy kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow, Nauka Publ., 1987.

[10] Zel’dovich Ya.B., Barenblatt G.I., Librovich V.B., et al. Matematicheskaya teoriya goreniya i vzryva [Mathematical theory of combustion and explosion]. Moscow, Nauka Publ., 1980.

[11] Orlenko L.P., ed. Fizika vzryva. T. 1 [Explosion physics. Vol. 1]. Moscow, FIZMATLIT Publ., 2002.

[12] Barzykin V.V., Merzhanov A.G. A boundary problem in the thermal explosion theory. Doklady AN SSSR, 1958, vol. 120, no. 6, pp. 1271--1273 (in Russ.).

[13] Bowden F.P., Yoffe A.D. Fast reactions in solids. Butterworths Scientific Publ., 1958.

[14] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. The variational form of the mathematical model of a thermal explosion in a solid body with temperature-dependent thermal conductivity. High Temp., 2018, vol. 56, no. 2, pp. 223--228. DOI: https://doi.org/10.1134/S0018151X18010212

[15] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Variational estimates of the parameters of a thermal explosion of a stationary medium in an arbitrary domain. Int. J. Heat Mass Transf., 2019, vol. 135, pp. 614--619. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.009