|

Numerical Simulation of Air Flow in the State of Thermal and Chemical Nonequilibrium behind a Shock Wave Front

Authors: Bryzgalov A.I. Published: 23.06.2021
Published in issue: #3(96)/2021  
DOI: 10.18698/1812-3368-2021-3-94-111

 
Category: Physics | Chapter: Theoretical Physics  
Keywords: dissociation, nonequilibrium, vibrational temperature, shock wave, relaxation

We used the model of a five-component air mixture flow behind the front of a one-dimensional shock wave to compute the flow parameters for shock front temperatures of up to 7000 K, taking into account the variable composition, translational and vibrational temperatures and pressure in the relaxation zone. Vibrational level population in oxygen and nitrogen obeys the Boltzmann distribution with one common vibrational temperature. We consider the effect that temperature nonequilibrium has on the chemical reaction rate by introducing a nonequilibrium factor to the reaction rate constant, said factor depending on the vibrational and translational temperatures. We compared our calculation results for dissociation behind the shock front to the published data concerning temperature nonequilibrium in a pure oxygen flow behind a shock wave front for two different intensities of the latter. The comparison shows a good agreement between the vibrational temperature, experimental data and calculations based on the experimental values of vibrational temperature and molality. We computed the parameters of thermodynamically nonequilibrium dissociation in the air behind the shock wave front, comparing them to those of equilibrium dissociation and calculation results previously published by others. The study demonstrates that the molality values computed converge gradually with those found in published data as the distance from the shock front increases. We list the reasons for the discrepancy between our calculation results and previously published data

The study was supported by the Russian Foundation for Basic Research (RFBR grant no. 19-31-90114)

References

[1] Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. Moscow, Energiya Publ., 1976.

[2] Gordeev A.N., Kolesnikov A.F. Vysokochastotnye induktsionnye plazmotrony serii VGU [High-frequency induction plasmatron of IPG-series]. V kn.: Aktual’nye problemy mekhaniki. Fiziko-khimicheskaya mekhanika zhidkostey i gazov [In: Actual Problems of Mechanics. Physical-Chemical Liquid Mechanics]. Moscow, Nauka Publ., 2010, pp. 151--177 (in Russ.).

[3] Kolesnikov A.F., Gordeev A.N., Vasil’evskii S.A. Effects of catalytic recombination on the surface of metals and quartz for the conditions of entry into the Martian atmosphere. High Temp., 2016, vol. 54, iss. 1, pp. 29--37. DOI: https://doi.org/10.1134/S0018151X1505017X

[4] Williamson J.M., DeJoseph C.A. Jr. Determination of gas temperature in an open-air atmospheric pressure plasma torch from resolved plasma emission. J. Appl. Phys., 2003, vol. 93, iss. 4, pp. 1893--1898. DOI: https://doi.org/10.1063/1.1536736

[5] Gordeev A.N., Kolesnikov A.F., Sakharov V.I. Experimental and numerical investigation of heat exchange between underexpanded high-enthalpy air jets and cylindrical models. Fluid Dyn., 2018, vol. 53, no. 5, pp. 702--710. DOI: https://doi.org/10.1134/S0015462818050105

[6] Sakharov V.I. CFD flows modelling in inductive plasmatron and heat transfer in under expanded air jets under IPG-4 (IPM RAS) facility test conditions. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical-Chemical Kinetics in Gas Dynamics], 2007, no. 5 (in Russ.). Available at: http://chemphys.edu.ru/issues/2007-5/articles/38

[7] Chernyy G.G. Gazovaya dinamika [Gas dynamics]. Moscow, Nauka Publ., 1988.

[8] Warnatz J., Maas U., Dibble R.W. Combustion. Berlin, Heidelberg, Springer, 2006. DOI: https://doi.org/10.1007/978-3-540-45363-5

[9] Zeldovich Ya.P., Rayzer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of shock waves and high-temperature hydrodynamic phenomena]. Moscow, Nauka Publ., 1966.

[10] Knab O., Fruehauf H.-H., Messerschmid E.W. Theory and validation of the physically consistent coupled vibration-chemistry-vibration model. J. Thermophys. Heat Trans., 1995, vol. 9, iss. 2, pp. 219--226. DOI: https://doi.org/10.2514/3.649

[11] Millikan R.C., White D.R. Systematics of vibrational relaxation. J. Chem. Phys., 1963, vol. 39, iss. 12, pp. 3209--3213. DOI: https://doi.org/10.1063/1.1734182

[12] Ibraguimova L.B., Shatalov O.P., Tunik Yu.V., et al. Shock tube investigation of molecular oxygen dissociation at temperatures of 4000 to 10800 K. In: Kontis K. (eds). 28th Int. Symp. Shock Waves. Springer, Berlin, Springer, 2011, pp. 125--130. DOI: https://doi.org/10.1007/978-3-642-25688-2_19

[13] Ковач Э.А., Лосев С.А., Сергиевская А.Л. Модели двухтемпературной химической кинетики для описания диссоциации молекул в сильных ударных волнах. Химическая физика, 1995, т. 14, № 9, с. 44--76.

[14] Gnoffo P.A., Gupta R.N., Shinn J.L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA TP-2867, 1989.

[15] Glushko V.P., ed. Termodinamicheskie svoystva individual’nykh veshchestv [Termodynamical properties of individual substances]. Moscow, Nauka Publ., 1979.

[16] Born P.N., Byrne G.D., Hindmarsh A.C. VODE: a variable coefficient ODE solver. SIAM J. Sci. Stat. Comput., 1989, vol. 10, no. 5, pp. 1038--1051. DOI: https://doi.org/10.1137/0910062

[17] Ibraguimova L.B., Levashov V.Yu., Sergievskaya A.L., et al. Modeling of vibration-dissociation oxygen kinetics at temperatures of 4,000--11,000 K. Fluid Dyn., 2014, vol. 49, no. 1, pp. 112--119. DOI: https://doi.org/10.1134/S0015462814010141

[18] Blackman V. Vibrational relaxation in oxygen and nitrogen. J. Fluid Mech., 1956, vol. 1, iss. 1, pp. 61--85. DOI: https://doi.org/10.1017/S0022112056000056

[19] Generalov N.A., Losev S.A. Vibration, excitation, and molecular dissociation of gaseous oxygen and carbon dioxide in a shock wave. J. Quant. Spectrosc. Radiat. Transf., 1966, vol. 6, iss. 1, pp. 101--104. DOI: https://doi.org/10.1016/0022-4073(66)90066-5

[20] Owen K.G., Davidson D.F., Hanson R.C. Oxygen vibrational relaxation times: shock tube/laser absorption measurements. J. Thermophys. Heat Trans., 2015, vol. 30, iss. 4, pp. 791--798. DOI: https://doi.org/10.2514/1.T4505

[21] Kiefer J.H., Lutz R.W. The effect of oxygen atoms on the vibrational relaxation of oxygen. Symp. (Int.) Сombus., 1967, vol. 11, iss. 1, pp. 67--76. DOI: https://doi.org/10.1016/S0082-0784(67)80134-6

[22] Breen J.E., Quy R.B., Glass G.P. Vibrational relaxation of O2 in the presence of atomic oxygen. J. Chem. Phys., 1973, vol. 59, iss. 1, pp. 556--557. DOI: https://doi.org/10.1063/1.1679846

[23] Losev S.A., Makarov V.N., Pogosbekyan M.Yu. Model of the physico-chemical kinetics behind the front of a very intense shock wave in air. Fluid Dyn., 1995, vol. 30, no. 2, pp. 299--309. DOI: https://doi.org/10.1007/BF02029844

[24] Duff R.E., Davidson N. Calculation of reaction profiles behind steady state shock waves. II. The dissociation of air. J. Chem. Phys., 1959, vol. 31, iss. 4, pp. 1018--1027. DOI: https://doi.org/10.1063/1.1730497