Quantum Size Effects Arising from Nanocomposites Physical Doping with Nanostructures Having High Electron Affinit

Authors: Vysikaylo P.I. Published: 23.06.2021
Published in issue: #3(96)/2021  
DOI: 10.18698/1812-3368-2021-3-150-175

Category: Physics | Chapter: Theoretical Physics  
Keywords: physical doping, high-power microwave devices, allotropic carbon nanostructures, plasma metal coating, nanocomposite based on transition metal carbides, nanocomposite properties control, dry friction coefficient, nanocomposite wear and heat resistance, charged layer

This article considers main problems in application of nanostructured materials in high technologies. Theoretical development and experimental verification of methods for creating and studying the properties of physically doped materials with spatially inhomogeneous structure on micro and nanometer scale are proposed. Results of studying 11 quantum size effects exposed to nanocomposites physical doping with nanostructures with high electron affinity are presented. Theoretical and available experimental data were compared in regard to creation of nanostructured materials, including those with increased strength and wear resistance, inhomogeneous at the nanoscale and physically doped with nanostructures, i.e., quantum traps for free electrons. Solving these problems makes it possible to create new nanostructured materials, investigate their varying physical properties, design, manufacture and operate devices and instruments with new technical and functional capabilities, including those used in the nuclear industry. Nanocrystalline structures, as well as composite multiphase materials and coatings properties could be controlled by changing concentrations of the free carbon nanostructures there. It was found out that carbon nanostructures in the composite material significantly improve impact strength, microhardness, luminescence characteristics, temperature resistance and conductivity up to 10 orders of magnitude, and expand the range of such components’ possible applications in comparison with pure materials, for example, copper, aluminum, transition metal carbides, luminophores, semiconductors (thermoelectric) and silicone (siloxane, polysiloxane, organosilicon) compounds

The study was supported by Russian Foundation for Basic Research (RFBR projects no. 1807-00897A and no. 19-07-01005A)


[1] Vysikaylo P.I., Mitin V.S., Belyaev V.V. Physical doping for control of nanocrystallinestructure and properties of multiphase composite metal-carbon coatings on the basis of transition metal carbides. Elektronnaya tekhnika. Ser. 3. Mikroelektronika [Electronic Engineering. Series 3. Microelectronics], 2018, no. 3, pp. 44--58 (in Russ.).

[2] Vysikaylo Ph.I. Physical fundamentals of hardening of materials by space charge layers. Surf. Engin. Appl. Electrochem., 2010, vol. 46, no. 4, pp. 291--298. DOI: https://doi.org/10.3103/S1068375510040010

[3] Vysikaylo P.I., Mitin V.S., Markin A.A., et al. Cooper-carbon nanostructured composite coatings with controlled structure. OJAppS, 2016, no. 6, pp. 195--207. DOI: http://dx.doi.org/10.4236/ojapps.2016.63021

[4] Burchfield L.A., Al Fahim M., Wittman R.S., et al. Novamene: a new class of carbon allotropes. Heliyon, 2017, vol. 3, iss. 2, art. e00242. DOI: https://doi.org/10.1016/j.heliyon.2017.e00242

[5] Popov M., Buga S., Vysikaylo P., et al. C60-doping of nanostructured Bi--Sb--Te thermoelectrics. Phys. Status Solidi A, 2011, vol. 208, iss. 12, pp. 105--113. DOI: https://doi.org/10.1002/pssa.201127075

[6] Vysikaylo Ph.I. Cumulative quantum mechanics (CQM). Part I. Prerequisites and fundamentals of CQM. Surf. Engin. Appl. Electrochem., 2012, vol. 48, no. 4, pp. 293--305. DOI: https://doi.org/10.3103/S1068375512040187

[7] Vysikaylo Ph.I. Cumulative quantum mechanics (CQM). Part II. Application of cumulative quantum mechanics in describing the Vysikaylo polarization quantum-size effects. Surf. Engin. Appl. Electrochem., 2012, vol. 48, no. 5, pp. 395--411. DOI: https://doi.org/10.3103/S1068375512050158

[8] Vysikaylo P.I. Self-organizing cumulative dissipative nanostructures and their shimmering crystals in the doped IV group dielectric. Solution to the paradox based on cumulative quantum mechanics. Inzhenernaya fizika [Engineering Physics], 2013, no. 3, pp. 15--48 (in Russ.).

[9] Vysikaylo P.I. Polarization of allotropic hollow carbon form and its application in nanocomposites construction. Nanotekhnika, 2011, no. 1, pp. 19--36 (in Russ.).

[10] Vysikaylo P.I., Belyaev V.V., Mitin V.S. Narushenie elektroneytral’nosti v nano-kompozitakh [Interruption of electroneutrality in nanocomposites]. Moscow, RUDN Publ., 2019.

[11] Vysikaylo P.I., Belyaev V.V. Metodika no. GSSSD ME 256--2016. Metodika eksperimental’no-raschetnogo opredeleniya profilya i lokal’nykh znacheniy otnositel’noy dielektricheskoy pronitsaemosti aktseptorno-legirovannykh kristallov po ramanovskim spektram [Methodology no. GSSSD ME 256--2016. Methodology for experimental-computational profile and local values determination of relative dielectric constant of acceptor-doped crystals using their Raman spectrum]. (in Russ.).

[12] Medvedev V.V., Popov M.Y., Mavrin B.N., et al. Cu--C60 nanocomposite with suppressed recrystallization. Appl. Phys. A, 2011, vol. 105, no. 1, pp. 45--48. DOI: https://doi.org/10.1007/s00339-011-6544-4

[13] Zameshin A., Popov M., Medvedev V., et al. Electrical conductivity of nanostructured and C60-modified aluminum. Appl. Phys. A, 2012, vol. 107, no. 4, pp. 863--869. DOI: https://doi.org/10.1007/s00339-012-6805-x

[14] Maniks J., Mitin V., Kanders U., et al. Deformation behavior and interfacial sliding in carbon/copper nanocomposite films deposited by high power DC magnetron sputtering. Surf. Coat. Technol., 2015, vol. 276, pp. 279--285. DOI: https://doi.org/10.1016/j.surfcoat.2015.07.004

[15] Sychov M.M., Mjakin S.V., Ogurtsov K.A., et al. Effect of shungite nanocarbon deposition on the luminescent properties of ZnS:Cu particles. In: Jablonski R., Szewczyk R. (eds). Recent Global Research and Education: Technological Challenges. Advances in Intelligent Systems and Computing, vol. 519. Cham, Springer, 2016, pp. 19--24. DOI: https://doi.org/10.1007/978-3-319-46490-9_3

[16] Vysikaylo P.I., Mitin V.S., Yakovlev A.Yu., et al. Cooper-carbon nanostructured composite coatings with controlled structure. Elektronnaya tekhnika. Ser. 3. Mikroelektronika [Electronic Engineering. Series 3. Microelectronics], 2017, no. 1, pp. 18--33 (in Russ.).

[17] Vysikaylo P.I. Long-range coulomb potentials, classical and quantum e-membranes, focusing plasmoids (a review). Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2015, vol. 3, no. 5, pp. 471--478 (in Russ.).

[18] Reed C.A., Bolskar R.D. Discrete fulleride anions and fullerenium cations. Chem. Rev., 2000, vol. 100, iss. 3, pp. 1075--1120. DOI: 1 https://doi.org/10.1021/cr980017o

[19] Tuktarov R.F., Akhmet’yanov R.F., Shikhovtseva E.S., et al. Plasma oscillations in fullerene molecules during electron capture. Jetp Lett., 2005, vol. 81, no. 4, pp. 171--174. DOI: https://doi.org/10.1134/1.1914875

[20] Jaffke T., Illenbergen E., Lezius M., et al. Formation of C-60 and C-70 by free electron capture. Activation energy and effect of the internal energy on lifetime. Chem. Phys. Lett., 1994, vol. 226, iss. 1-2, pp. 213--218. DOI: https://doi.org/10.1016/0009-2614(94)00704-7

[21] Huang J., Carman H.S., Compton R.N. Low-energy electron attachment to C60. J. Phys. Chem., 1995, vol. 99, iss. 6, pp. 1719--1726. DOI: https://doi.org/10.1021/j100006a013

[22] Margulis M.A. Sonoluminescence. Phys.--Usp., 2000, vol. 43, no. 3, pp. 259--282. DOI: https://doi.org/10.1070/PU2000v043n03ABEH000455

[23] Drakon A.V., Emelianov A.V., Eremin A.V., et al. Influence of quantum effects on the initiation of ignition and detonation. J. Exp. Theor. Phys., 2014, vol. 118, no. 5, pp. 831--843. DOI: https://doi.org/10.1134/S1063776114040025

[24] Starostin A.N., Gryaznov V.K., Petrushevich Yu.V. Development of the theory of momentum distribution of particles with regard to quantum phenomena. J. Exp. Theor. Phys., 2017, vol. 125, no. 5, pp. 940--947. DOI: https://doi.org/10.1134/S106377611710017X

[25] Yakushkin A.A., Vysikaylo F.I. Modification of the surface and coating application on fuel cladding tubes for nuclear reactors. Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-Matematika [Bulletin MSRU. Series: Physics and Mathematics], 2018, no. 4, pp. 92--111 (in Russ.). DOI: https://doi.org/10.18384/2310-7251-2018-4-92-111

[26] Sidorov L.N., Yurovskaya M.A., Borshchevskiy A.Ya., et al. Fullereny [Fullerens]. Moscow, Ekzamen Publ., 2005.

[27] Vysikaylo P.I. Cumulative point-L1 between two positively charged plasma structures (3-D strata). IEEE Trans. Plasma Sci., 2014, vol. 42, no. 12, pp. 3931--3935. DOI: https://doi.org/10.1109/TPS.2014.2365438

[28] Mashchenko V.I., Konstantinov M.S., Tsebruk I.S., et al. New electrically conductive nanocomposites based on siloxane materials. Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-Matematika [Bulletin MSRU. Series: Physics and Mathematics], 2019, no. 1, pp. 57--67 (in Russ.). DOI: https://doi.org/10.18384/2310-7251-2019-1-57-67