REFERENCES
[1] Bikkenin R.R., Chesnokov M.N. Teoriya elektricheskoy svyazi [Theory of Electrical
Communication]. Moscow, Akademiya Publ., 2010. 329 p.
[2] Getreuer P. Linear Methods for Image Interpolation.
Image Processing On Line
,
2011.
[3] Turkowski K., Gabriel S. Filters for Common Resampling Tasks. Boston, Graphics
Gems I. Academic Press, 1990, pp. 147–165.
[4] Tsurkov V.I. An analytical model of edge protection under noise suppression by
anisotropic diffusion.
J. Computer and Systems Sciences International
, 2000, vol. 39,
no. 3, pp. 437–440.
[5] Tsurkov V.I., Kovkov D.V. Sposob udaleniya shuma v izobrazhenii [Method of
Removing Noise in the Image]. Patent RF no. RUS 2316816, 25.08.2005.
[6] Mironov A.A., Tsurkov V.I. Approximation and decomposition by extremal graphs.
Computational Mathematics and Mathematical Physics
, 1993, vol. 33, no. 2, pp. 251–
262.
[7] Mironov A.A., Tsurkov V.I. Network models with fixed parameters at the
communication nodes. II.
J. Computer and Systems Sciences International
, 1994,
vol. 32, no. 6, pp. 1–11.
[8] Mironov A.A., Tsurkov V.I. Transport and network problems with the minimax
criterion.
Computational Mathematics and Mathematical Physics
, 1995, vol. 35,
no. 1, pp. 15–30.
[9] Bondur V.G. Phase-Spectral Method’s Modeling of Two-Dimension Stochastic
Brightness Field, Formed at the Airspace Apparatus Entrance.
Issled. Zemli iz
kosmosa
[Izvestiya. Atmospheric and Oceanic Physics Earth Observation and Remote
Sensing], 2000, no. 5, pp. 28–44 (in Russ.).
[10] Zomet A., Peleg S. Multi-sensor super-resolution.
Proc. 6th IEEE Workshop
Applications of Computer Vision
, 2002, pp. 27–31.
[11] Matveev I.A., Murynin A.B. Principles of Development of a Stereovision System for
Motion Control of a Robot.
Journal of Computer and Systems Sciences International
,
2003, vol. 42, no. 3, p. 490.
[12] Matveev I.A., Murynin A.B. Identification of Objects on the Basis of Stereo Images:
Optimization of Algorithms for Reconstruction of a Surface.
Journal of Computer
and Systems Sciences International
, 1998, vol. 37, no. 3, p. 487.
[13] Soyfer V.A., ed. Metody komp’yuternoy obrabotki izobrazheniy [Methods of
Computer Image Processing]. Moscow, Fizmatlit Publ., 2003.
[14] Gao Y., Rehman A., Wang Z. CW-SSIM Based image classification.
18th IEEE
International Conference on Image Processing (ICIP)
. 2011. IEEE, 2011, pp. 1249–
1252.
[15] Greenspan H., Anderson C.H., Akber S. Image enhancement by nonlinear
extrapolation in frequency space.
IEEE Transactions on Image Processing
, 2000,
vol. 9, no. 6, pp. 1035–1048.
[16] Khonina S.N., Baranov V.G., Kotlyar V.V. Spectral Method for the Digital Image
Fragment Increasing.
Komp’yuternaya optika
[Computer Optics], 1999, vol. 19,
pp. 165–173 (in Russ.).
[17] Alparone L. et al. Comparison of pansharpening algorithms: Outcome of the 2006
GRS-S data-fusion contest.
IEEE Transactions on Geoscience and Remote Sensing
,
2007, vol. 45, no. 10, pp. 3012–3021.
Статья поступила в редакцию 02.07.2015
Гурченков Анатолий Андреевич — сотрудник Федерального исследовательского цен-
тра “Информатика и управление” РАН (Российская Федерация, 119333, Москва,
ул. Вавилова, д. 40).
Gurchenkov A.A. — officer of the Institute of Informatics Problems, Russian Academy of
Sciences (Vavilova ul. 40, Moscow, 119333 Russian Federation).
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 2
101