Previous Page  9 / 10 Next Page
Information
Show Menu
Previous Page 9 / 10 Next Page
Page Background

А.А. Гурченков, А.С. Есенков, А.П. Тизик, В.И. Цурков

40

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6

[10] Dyubin G.N., Korbut A.A. Greedy algorithms for the minimization Knapsack problem:

Average behavior.

Journal of Computer and Systems Sciences International

, 2008, vol. 47, no. 1,

pp. 14–24. DOI: 10.1007/s11488-008-1003-1

[11] Davis T.A., Hager W.W., Hungerford J.T

.

An efficient hybrid algorithm for the separable

convex quadratic Knapsack problem.

ACM Transactions on Mathematical Software

(

TOMS

),

2016, vol. 42, no. 3.

[12] Caprara A., Furini F., Malaguti E., Traversi E. Solving the temporal Knapsack problem via

recursive Dantzig — Wolfe reformulation.

Information Processing Letters

, 2016, vol. 116, no. 5,

pp. 379–386.

[13] Cunha J.O., Simonetti L., Lucena A. Lagrangian heuristics for the quadratic Knapsack

problem.

Computational Optimization and Applications

, 2016, vol. 63, no. 1, pp. 97–120.

[14] Peng B., Liu M., Lu Z., Kochengber G., Wang H. An ejection chain approach for the

quadratic multiple Knapsack problem.

European Journal of Operational Research

, 2016,

vol. 253, no. 2, pp. 328–336.

[15] Qin J., Xu X., Wu Q., Cheng T.C.E. Hybridization of tabu search with feasible and infea-

sible local searches for the quadratic multiple Knapsack problem.

Computers

&

Operations

Research

, 2016, vol. 66, pp. 199–214.

[16] Taylor R. Approximation of the quadratic Knapsack problem.

Operations Research Let-

ters

, 2016, vol. 44, no. 4, pp. 495–497.

[17] Haddar B., Khemakhem M., Hanafi S., Wilbaut C. A hybrid quantum particle swarm op-

timization for the multidimensional Knapsack problem.

Engineering Applications of Artificial

Intelligence

, 2016, vol. 55, pp. 1–13.

[18] Dumbadze L.G., Tizik A.P. Many-dimensional Knapsack problem of a special ladder

structure.

Journal of Computer and Systems Sciences International

, 1996, vol. 35, no. 4,

pp. 614–617.

[19] Esenkov A.S., Leonov

V.Yu

., Tizik A.P., Tsurkov V.I. Nonlinear integer transportation

problem with additional supply and consumption points.

Journal of Computer and Systems

Sciences International

, 2015, vol. 54, no. 1, pp. 86–92. DOI: 10.1134/S1064230715010050

[20] Kuzovlev D.I., Tizik A.P., Treskov Yu.P. Decompositional algorithm for solving transpor-

tation problem with fixed channel capasities.

Mekhatronika, avtomatizatsiya, upravlenie

[Mechatronics, automation, control], 2012, no. 1, pp. 45–48 (in Russ.).

[21] Tizik A.P., Kuzovlev D.I., Sokolov A.A. Method of successive modifications of functional

for transportation problem with additional warehouse points for suppliers and consumers.

Vestnik TvGU. Ser. prikladnaya matematika

[Herald of Tver State University. Series: Applied

Mathematics], 2012, no. 4, pp. 91–98 (in Russ.).

Gurchenkov А.А.

— Dr. Sci. (Phys.-Math.), Professor of Higher Mathematics Department,

Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation), leading researcher of the Dorodnitsyn Computing Centre, Federal Re-

search Centre Computer Science and Control, Russian Academy of Sciences (ul. Vavilova 40,

Moscow, 119333 Russian Federation).