А.А. Гурченков, А.С. Есенков, А.П. Тизик, В.И. Цурков
40
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2016. № 6
[10] Dyubin G.N., Korbut A.A. Greedy algorithms for the minimization Knapsack problem:
Average behavior.
Journal of Computer and Systems Sciences International
, 2008, vol. 47, no. 1,
pp. 14–24. DOI: 10.1007/s11488-008-1003-1
[11] Davis T.A., Hager W.W., Hungerford J.T
.
An efficient hybrid algorithm for the separable
convex quadratic Knapsack problem.
ACM Transactions on Mathematical Software
(
TOMS
),
2016, vol. 42, no. 3.
[12] Caprara A., Furini F., Malaguti E., Traversi E. Solving the temporal Knapsack problem via
recursive Dantzig — Wolfe reformulation.
Information Processing Letters
, 2016, vol. 116, no. 5,
pp. 379–386.
[13] Cunha J.O., Simonetti L., Lucena A. Lagrangian heuristics for the quadratic Knapsack
problem.
Computational Optimization and Applications
, 2016, vol. 63, no. 1, pp. 97–120.
[14] Peng B., Liu M., Lu Z., Kochengber G., Wang H. An ejection chain approach for the
quadratic multiple Knapsack problem.
European Journal of Operational Research
, 2016,
vol. 253, no. 2, pp. 328–336.
[15] Qin J., Xu X., Wu Q., Cheng T.C.E. Hybridization of tabu search with feasible and infea-
sible local searches for the quadratic multiple Knapsack problem.
Computers
&
Operations
Research
, 2016, vol. 66, pp. 199–214.
[16] Taylor R. Approximation of the quadratic Knapsack problem.
Operations Research Let-
ters
, 2016, vol. 44, no. 4, pp. 495–497.
[17] Haddar B., Khemakhem M., Hanafi S., Wilbaut C. A hybrid quantum particle swarm op-
timization for the multidimensional Knapsack problem.
Engineering Applications of Artificial
Intelligence
, 2016, vol. 55, pp. 1–13.
[18] Dumbadze L.G., Tizik A.P. Many-dimensional Knapsack problem of a special ladder
structure.
Journal of Computer and Systems Sciences International
, 1996, vol. 35, no. 4,
pp. 614–617.
[19] Esenkov A.S., Leonov
V.Yu., Tizik A.P., Tsurkov V.I. Nonlinear integer transportation
problem with additional supply and consumption points.
Journal of Computer and Systems
Sciences International
, 2015, vol. 54, no. 1, pp. 86–92. DOI: 10.1134/S1064230715010050
[20] Kuzovlev D.I., Tizik A.P., Treskov Yu.P. Decompositional algorithm for solving transpor-
tation problem with fixed channel capasities.
Mekhatronika, avtomatizatsiya, upravlenie
[Mechatronics, automation, control], 2012, no. 1, pp. 45–48 (in Russ.).
[21] Tizik A.P., Kuzovlev D.I., Sokolov A.A. Method of successive modifications of functional
for transportation problem with additional warehouse points for suppliers and consumers.
Vestnik TvGU. Ser. prikladnaya matematika
[Herald of Tver State University. Series: Applied
Mathematics], 2012, no. 4, pp. 91–98 (in Russ.).
Gurchenkov А.А.
— Dr. Sci. (Phys.-Math.), Professor of Higher Mathematics Department,
Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation), leading researcher of the Dorodnitsyn Computing Centre, Federal Re-
search Centre Computer Science and Control, Russian Academy of Sciences (ul. Vavilova 40,
Moscow, 119333 Russian Federation).