Previous Page  11 / 11
Information
Show Menu
Previous Page 11 / 11
Page Background

The Research of Solution of Levinson — Smith Equation

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 1

25

[3] Lefschetz S. Differential equations: Geometric theory. N.Y. — London, Interscience Publ.,

1957. 374 p.

[4] Villari G. On the qualitative behavior of solutions of Li'enard equation.

J. Differential

Equations,

1987, vol. 67 (2), pp. 269–277.

[5] Lijuna Y., Xianwu Z. An upper bound for the amplitude of limit cycles in Li'enard systems

with symmetry.

J. Differential Equations

, 2015, vol. 258 (8), pp. 2701–2710.

[6] Turner N., McClintock P.V.E., Stefanovska A. Maximum amplitude of limit cycles in

Li'enard systems.

Phys. Rev. E

, 2015, vol. 91, p. 012927.

[7] Sabatini M. On the period function of Li'enard systems.

J. Differential Equations

, 1999,

vol. 152 (2), pp. 467–487.

[8] Burton T.A., Townsend C.G. On the generalized Li'enard equation with forcing function.

J. Differential Equations

, 1968, vol. 4 (4), pp. 620–633.

[9] Krishchenko A.P. Localization of limit cycles.

Differential Equations

, 1995, vol. 31 (11),

pp. 1826–1833.

[10] Krishchenko A.P. Estimations of domains with cycles.

Comput. Math. Appl.

, 1997,

vol. 34 (2-4), pp. 325–332.

[11] Krishchenko A.P. Localization of invariant compact sets of dynamical systems.

Differential Equations

, 2005, vol. 41 (12), pp. 1669–1676. DOI: 10.1007/s10625-006-0003-6

[12] Krishchenko A.P., Starkov K.E. Localization of compact invariant sets of nonlinear time-

varying systems.

Int.

J. Bifur. Chaos Appl. Sci. Engrg

., 2008, vol. 24 (5), pp. 1599–1604.

[13] Kanatnikov A.N., Krishchenko A.P. Localization of invariant compact sets of

nonautonomous systems.

Differential Equations

, 2009, vol. 45 (1), pp. 46–52.

[14] Starkov K.E., Coria L.N. Global dynamics of the Kirschner — Panetta model for the

tumor immunotherapy.

Nonlin. Anal.: Real World Appl

., 2013, vol. 14 (3), pp. 1425–1433.

[15] Starkov K.E., Villegas A. On some dynamical properties of a seven-dimensional cancer

model with immunotherapy.

Int.

J. Bifur. Chaos

, 2014, vol. 24 (02), p. 1450020.

[16] Krishchenko A.P., Starkov K.E. Dynamical analysis of Raychaudhuri equations based on

the localization method of compact invariant sets.

Int

.

J. Bifur. Chaos

, 2014, vol. 24 (11),

p. 1450136.

Styrt O.G.

— Cand. Sci. (Phys.-Math.), Assoc. Professor of Mathematical Simulation Depart-

ment, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation).

Krishchenko A.P.

— Dr. Sci. (Phys.-Math.), Professor, Head of Mathematical Simulation

Department, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, Moscow,

105005 Russian Federation).

Please cite this article in English as:

Styrt O.G., Krishchenko A.P. The Research of Solution of Levinson — Smith Equation.

Vestn.

Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of the Bauman Moscow

State Tech. Univ., Nat. Sci.], 2017, no. 1, pp. 15–25. DOI: 10.18698/1812-3368-2017-1-15-25