Previous Page  15 / 16 Next Page
Information
Show Menu
Previous Page 15 / 16 Next Page
Page Background

Алгоритм построения наследственно минимаксной сети с заданным вектором степеней узлов

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 1

57

The minimax values determine the necessary and sufficient

conditions under which the truncated polyhedrons are not

empty sets. Finally, we obtained an algorithm for

constructing a hereditarily-minimax network in network

polyhedrons

REFERENCES

[1]

Cormen T., Leiserson Ch., Rivest R., Stein C. Introduction to algorithms. 3rd Edition.

MIT Press, 2009.

[2]

Zykov A.A. Osnovy teorii grafov [Fundamentals of graph theory]. Moscow, Vuzovskaya

kniga, 2004. 664 p.

[3]

Mironov A.A., Tsurkov V.I. Hereditarily minimax matrices in models of transportation

type.

Journal of Computer and Systems Sciences International

, 1998, vol. 37, no. 6, pp. 927–944.

[4] Mironov A.A., Tsurkov V.I. Open transportation models with a minimax criterion.

Dokl.

Math

., 2001, vol. 64 (3), pp. 374–377.

[5]

Tsurkov V., Mironov A. Minimax under transportation constrains. Dordrecht–Boston–

London, Kluwer Academic Publishers, 1999.

[6]

Lukoyanov

N.Yu

. Minimax and viscosity solutions in optimization problems for heredi-

tary systems.

Proc. Steklov Inst. Math

., 2010, vol. 269, pp. 214–225.

DOI: 10.1134/S0081543810060179

[7]

Holstein E.G., Yudin D.B. Zadachi lineynogo programmirovaniya transportnogo tipa

[Linear programming problem of the transport type]. Moscow, Nauka Publ., 1969. 382 p.

[8]

Goldsmith A. Wireless communications. Cambridge University Press, 2005. 571 p.

[9]

Lewis F.L

.

Wireless sensor networks.

Smart Environments: Technologies, Protocols, and

Applications

. N.Y., John Wiley, 2004. 432 p.

[10]

Tishchenko S.A. Separators in planar graphs as a new characterization tool.

Fundam.

Prikl. Mat.

, 2002, vol. 8, no. 4, pp. 1193–1214 (in Russ.).

[11] Voloshin V.I. Introduction to graph and hypergraph theory. N.Y., Nova Science

Publishers, 2009.

[12]

Selin P.S., Tsurkov V.I. Method of characteristic functions for classes of networks with

fixed node degrees.

Journal of Computer and Systems Sciences International

, 2014, vol. 53,

no. 5, pp. 645–655. DOI: 10.1134/S1064230714050128

[13]

Ding J., Tana P., Lu Y.-Z. Optimizing the controllability index of directed networks with

the fixed number of control nodes.

Neurocomputing

, 2016, vol. 171, pp. 1524–1532.

[14]

Fontanari J.F., Rodrigues F.A

.

Influence of network topology on cooperative problem-

solving systems.

Theory in Biosciences

, 2015, pp. 1–10.

[15]

Peng G.-S., Wu J. Optimal network topology for structural robustness based on natural

connectivity.

Physica A: Statistical Mechanics and its Applications

, 2016, vol. 443, pp. 212–220.

Available at:

http://dx.doi.org/10.1016/j.physa.2015.09.023

[16]

Abello J., Queyroi F. Network decomposition into fixed points of degree peeling.

Social

Network Analysis and Mining

, 2014, no. 4, pp. 191.

[17]

Horvat E.-A., Zweig K.A. A fixed degree sequence model for the one-mode projection of

multiplex bipartite graphs.

Social Network Analysis and Mining

, 2013, vol. 3, no. 4, pp. 1209–

1224.