Метод объектно-ориентированной классификации объектов подстилающей поверхности…
ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3
145
[5] Bondur V.G., Gaponova M.V., Murynin A.B., Trekin A.N. Modul' O obucheniya klassi-
fikatorov dlya kosmicheskikh snimkov nizkogo i vysokogo razresheniya [Learning package O
for high and low resolution space images classifier]. Svidel'stvo o gosudarstvennoy registratsii
programmy dlya EVM № 2013614299. Data gosudarstvennoy registratsii v Reestre programm
dlya EVM 29 aprelya 2013 g [Software certificate of registration № 2013614299. Reg. date:
25.04.2013] (in Russ.).
[6]
Ignatiev V.Yu., Murynin A.B., Trekin A.N. Object oriented space images classification
method for impact regions monitoring.
Otkrytiya i dostizheniya nauki: Sbornik materialov
mezhdunarodnoy nauchnoy konferentsii
[Scientific discoveries and achievements. Proc. int. sci.
conf.]. 2015, pp. 176–186 (in Russ.).
[7] Blaschke T., Johansen K., Tiede D., Weng Q., ed. Object-based image analysis for vegeta-
tion mapping and monitoring. In: Advances in environmental remote Sensing: sensors, algo-
rithms, and applications. CRC Press, 2011. P. 241–272. DOI: 10.1201/b10599-13 Available at:
http://www.crcnetbase.com/doi/abs/10.1201/b10599-13[8] Rougier S., Puissant A., Stumpf A., Lachiche N. Comparison of sampling strategies for ob-
ject-based classification of urban vegetation from very high resolution satellite images.
Inter-
national Journal of Applied Earth Observation and Geoinformation
, 2016, vol. 51, pp. 60–73.
[9] Vahidi H., Monabbati E. Contextual image classification approach for monitoring of agri-
cultural land cover by support vector machines and Markov random fields.
International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
, 2013,
vol. XL-1/W3 / SMPR 2013, 5–8 October 2013, Tehran, Iran.
[10]
Burnett C., Dlaschke T. A multi-scale segmentation/object relationship modelling
methodology for landscape analysis.
Ecological Modelling
, 2003, vol. 168, no. 3, pp. 233–249.
[11]
Stankova H. Object-oriented classification of Landsat imagery and aerial photographs for
land cover mapping.
Proceedings — Symposium GIS Ostrava
, 2010, 24–27 January 2010.
[12]
Marangoz A.M., Oruc M., Karakis S., Sahin H. Comparison of pixel-based and
object-oriented classification using Ikonos imagery for automatic building extraction —
Safranbolu testfield.
5
th
Int. Symp. “Turkish-German Joint Geodetic Days”
, Berlin Technical
University, 28–31 March 2006.
[13]
Flanders D., Hall-Beyer M., Pereverzoff J. Preliminary evaluation of eCognition object-
based software for cut block delineation and feature extraction.
Canadian Journal of Remote
Sensing
, 2003, vol. 29, no. 4, pp. 441–452.
[14]
Verbeeck K., Van Orshoven J. External geo-information in the segmentation of VHR
imagery improves the detection of imperviousness in urban neighborhoods.
International
Journal of Applied Earth Observation and Geoinformation
, 2012, vol. 18, no. 1, pp. 428–435.
[15]
Chen G., Hay G.J., Carvalho L.M.T., Wulder M.A. Object-based change detection.
Inter-
national Journal of Remote Sensing
, 2012, vol. 33, no. 14, pp. 4434–4457.
DOI: 10.1080/01431161.2011.648285
Available at:
http://www.tandfonline.com/doi/abs/10.1080/01431161.2011.648285[16]
Benz U.C., Hofmann P., Willhauck G., Lingenfelder I., Heynen M. Multi-resolution,
object-oriented fuzzy analysis of remote sensing data for GIS-ready information.
ISPRS
Journal of Photogrammetry and Remote Sensing
, 2003, vol. 58, no. 3-4, pp. 239–258.
[17]
Bondur V.G. Osnovy aerokosmicheskogo monitoringa okruzhayushchey sredy. Kurs lektsiy
[Fundamentals of airspace environment monitoring. Lecture course]. Moscow, MIIGAiK Publ.,
2008. 546 p.