Previous Page  11 / 12 Next Page
Information
Show Menu
Previous Page 11 / 12 Next Page
Page Background

Метод объектно-ориентированной классификации объектов подстилающей поверхности…

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2017. № 3

145

[5] Bondur V.G., Gaponova M.V., Murynin A.B., Trekin A.N. Modul' O obucheniya klassi-

fikatorov dlya kosmicheskikh snimkov nizkogo i vysokogo razresheniya [Learning package O

for high and low resolution space images classifier]. Svidel'stvo o gosudarstvennoy registratsii

programmy dlya EVM № 2013614299. Data gosudarstvennoy registratsii v Reestre programm

dlya EVM 29 aprelya 2013 g [Software certificate of registration № 2013614299. Reg. date:

25.04.2013] (in Russ.).

[6]

Ignatiev V.Yu., Murynin A.B., Trekin A.N. Object oriented space images classification

method for impact regions monitoring.

Otkrytiya i dostizheniya nauki: Sbornik materialov

mezhdunarodnoy nauchnoy konferentsii

[Scientific discoveries and achievements. Proc. int. sci.

conf.]. 2015, pp. 176–186 (in Russ.).

[7] Blaschke T., Johansen K., Tiede D., Weng Q., ed. Object-based image analysis for vegeta-

tion mapping and monitoring. In: Advances in environmental remote Sensing: sensors, algo-

rithms, and applications. CRC Press, 2011. P. 241–272. DOI: 10.1201/b10599-13 Available at:

http://www.crcnetbase.com/doi/abs/10.1201/b10599-13

[8] Rougier S., Puissant A., Stumpf A., Lachiche N. Comparison of sampling strategies for ob-

ject-based classification of urban vegetation from very high resolution satellite images.

Inter-

national Journal of Applied Earth Observation and Geoinformation

, 2016, vol. 51, pp. 60–73.

[9] Vahidi H., Monabbati E. Contextual image classification approach for monitoring of agri-

cultural land cover by support vector machines and Markov random fields.

International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

, 2013,

vol. XL-1/W3 / SMPR 2013, 5–8 October 2013, Tehran, Iran.

[10]

Burnett C., Dlaschke T. A multi-scale segmentation/object relationship modelling

methodology for landscape analysis.

Ecological Modelling

, 2003, vol. 168, no. 3, pp. 233–249.

[11]

Stankova H. Object-oriented classification of Landsat imagery and aerial photographs for

land cover mapping.

Proceedings — Symposium GIS Ostrava

, 2010, 24–27 January 2010.

[12]

Marangoz A.M., Oruc M., Karakis S., Sahin H. Comparison of pixel-based and

object-oriented classification using Ikonos imagery for automatic building extraction —

Safranbolu testfield.

5

th

Int. Symp. “Turkish-German Joint Geodetic Days”

, Berlin Technical

University, 28–31 March 2006.

[13]

Flanders D., Hall-Beyer M., Pereverzoff J. Preliminary evaluation of eCognition object-

based software for cut block delineation and feature extraction.

Canadian Journal of Remote

Sensing

, 2003, vol. 29, no. 4, pp. 441–452.

[14]

Verbeeck K., Van Orshoven J. External geo-information in the segmentation of VHR

imagery improves the detection of imperviousness in urban neighborhoods.

International

Journal of Applied Earth Observation and Geoinformation

, 2012, vol. 18, no. 1, pp. 428–435.

[15]

Chen G., Hay G.J., Carvalho L.M.T., Wulder M.A. Object-based change detection.

Inter-

national Journal of Remote Sensing

, 2012, vol. 33, no. 14, pp. 4434–4457.

DOI: 10.1080/01431161.2011.648285

Available at:

http://www.tandfonline.com/doi/abs/10.1080/01431161.2011.648285

[16]

Benz U.C., Hofmann P., Willhauck G., Lingenfelder I., Heynen M. Multi-resolution,

object-oriented fuzzy analysis of remote sensing data for GIS-ready information.

ISPRS

Journal of Photogrammetry and Remote Sensing

, 2003, vol. 58, no. 3-4, pp. 239–258.

[17]

Bondur V.G. Osnovy aerokosmicheskogo monitoringa okruzhayushchey sredy. Kurs lektsiy

[Fundamentals of airspace environment monitoring. Lecture course]. Moscow, MIIGAiK Publ.,

2008. 546 p.