Studying Corrosion Resistance in Stainless Chrome-Nickel Steels and Corrosion-Resistant Nickel Alloys Exposed to the Hot Concentrated Sulfuric Acid

Authors: Zolotukhin S.E., Kurbatov A.Yu., Vetrova M.A., Grunsky V.N. Published: 16.12.2023
Published in issue: #6(111)/2023  
DOI: 10.18698/1812-3368-2023-6-83-96

Category: Chemistry | Chapter: Electrochemistry  


More and more attention is being paid to studying corrosion processes occurring on the contact surfaces of technological equipment operating in the extremely aggressive environments (temperature and caustic reagents). The failure of such equipment is causing not only serious economic losses, but also possible casualties and serious ecological consequences. To prevent equipment corrosion, the nickel-based materials are used, but fundamental corrosion studies were currently not presented, which determined relevance of the presented work. As part of the experiments, data were obtained on corrosion resistance of stainless chrome-nickel steels and corrosion-resistant nickel alloys within the sulfuric acid production process using the double contact--double adsorption (DC--DA) technology. It was established that with increasing concentration of the sulfuric acid (97.6--100 % (wt.)), the corrosion rate decreased nonlinearly with the minimum at the sulfuric acid concentration of 99.6 % (wt.). It was experimentally determined that corrosion rate of the nickel-containing materials under technological conditions was not exceeding 0.1 mm/g, which in turn could be used to calculate the service life, as well as to develop schedules for maintenance and repair of a system.It was proven that the main contribution to mass loss in metal structures was caused by the electrochemical corrosion

Please cite this article in English as:

Zolotukhin S.E., Kurbatov A.Yu., Vetrova M.A., et al. Studying corrosion resistance in stainless chrome-nickel steels and corrosion-resistant nickel alloys exposed to the hot concentrated sulfuric acid. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 6 (111), pp. 83--96 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-6-83-96


[1] Krasnaya E.G., Tarantseva K.R., Firsova O.V. [Evaluation of environmental damage due to corrosion damage to equipment]. Molodezh. Nauka. Innovatsii. Sb. st. XI Mezhdunar. nauch.-prakt. internet-konf. [Youth. Science. Innovations. Proc. XI Int. Sci.-Pract. Internet Conf.]. Penza, Penza State Technical Academy Publ., 2015, p. 4 (in Russ.).

[2] Kuzin E.N., Averina Yu.M., Kurbatov A.Yu., et al. Technology of non-reagent deferrization of artesian water for the needs of recycling water supply of metallurgical enterprises. Chernye metally, 2020, no. 10, pp. 66--71 (in Russ.).

[3] Kurbatov A., Kuzin E., Vetrova M., et al. Technology of non-reagent water treatment of natural fresh waters for the technological needs of metallurgical enterprises. Proc. 30th Anniversary Int. Conf. on Metallurgy and Materials, 2021, pp. 127--132. DOI: https://doi.org/10.37904/metal.2021.4077

[4] Kolesnikova N.N., Lukanina Yu.K., Khvatov A.V., et al. Biological corrosion of metal structures and protection against her. Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of the Technological University], 2013, vol. 16, no. 1, pp. 170--174 (in Russ.).

[5] Maltseva G.N. Korroziya i zashchita oborudovaniya ot korrozii [Corrosion and protection of equipment from corrosion]. Penza, PSU Publ., 2000.

[6] Kalandarov N.O., Goyibova D.F. Effect of corrosion on the strength of equipment. Molodoy uchenyy [Young Scientist], 2016, no. 9, pp. 171--173 (in Russ.).

[7] Novoselova E.A., Ivakhnyuk G.K. Selection of corrosion resistant steels and iron-based alloys to reduce damage from corrosion of oil pipelines. Tekhnosfernaya bezopasnost [Technosphere Safety], 2021, no. 2, pp. 11--20 (in Russ.).

[8] Podoprigora A.A. The research of corrosion damages on the surface of oil pipeline after a long-term exploitation. Vestnik Yugorskogo gosudarstvennogo universiteta [Yugra State University Bulletin], 2011, no. 4, pp. 105--112 (in Russ.).

[9] Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., et al. Safety of storage of sulfuric acid. Computational Nanotechnology, 2016, no. 3, pp. 183--195 (in Russ.).

[10] Singh H., Kumar S., Kumar R. Overview of corrosion and its control: a critical review. Proc. Eng. Sci., 2021, vol. 3, no. 1, pp. 13--24. DOI: http://dx.doi.org/10.24874/PES03.01.002

[11] Akhtar J. A review on corrosion protection of iron and steel. Recent Pat. Corros. Sci., 2013, vol. 3, iss. 2, pp. 79--147. DOI: https://doi.org/10.2174/22106839113036660008

[12] Qian Y., Li Y., Jungwirth S., et al. The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: a review. Int. J. Electrochem. Sci., 2015, vol. 10, iss. 12, pp. 10756--10780. DOI: https://doi.org/10.1016/S1452-3981(23)11298-3

[13] Cicek V. Corrosion engineering and cathodic protection handbook. Wiley, 2017.

[14] Filimonova V.A., Kharchevnikova E.O. Protection of metals from corrosion. Vologdinskie chteniya, 2009, no. 76, pp. 128--129 (in Russ.).

[15] Perelygin Yu.P., Los I.S., Kireev S.Yu. Korroziya i zashchita metallov ot korrozii [Corrosion and protection of metals from corrosion]. Penza, PSU Publ., 2012.

[16] Abrashov A.A., Grigoryan N.S., Vagramyan T.A., et al. Development of a process for applying cerium-containing protective coatings to alloy steel. Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 7, pp. 1311--1314. DOI: https://doi.org/10.1134/S2070205120070023

[17] Abrashov A.A., Grigoryan N.S., Vagramyan T.A., et al. Durable light-absorbing coatings for structural steels. CIS Iron Steel Rev., 2020, vol. 19, no. 1, pp. 71--74. DOI: https://doi.org/10.17580/cisisr.2020.01.14

[18] Kozlova L.S., Sibileva S.V., Chesnokov D.V., et al. Corrosion inhibitors (review). Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2015, no. 2, pp. 67--75 (in Russ.).

[19] Tomashov N.D., Chernova G.P. Korroziya i korrozionnostoykie splavy [Corrosion and corrosion-resistant alloys]. Moscow, Metallurgiya Publ., 1973.

[20] Liu J., Alfantazi A., Asselin E. A new method to improve the corrosion resistance of titanium for hydrometallurgical applications. Appl. Surf. Sci., 2015, vol. 332, pp. 480--487. DOI: https://doi.org/10.1016/j.apsusc.2015.01.140

[21] Kuzin E.N., Kruchinina N.E., Fadeev A.B., et al. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of a pseudobrukite phase. Obogashchenie rud, 2021, no. 3, pp. 33--38 (in Russ.). DOI: https://doi.org/10.17580/or.2021.03.06

[22] Li Y., Ives M.B., Coley K.S., et al. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid. Corros. Sci., 2004, vol. 46, iss. 8, рp. 1969--1979. DOI: https://doi.org/10.1016/j.corsci.2003.10.017

[23] Jones S.A., Coley K.S., Kish J.R., et al. Corrosion of nickel-containing stainless-steel in concentrated sulfuric acid: potential oscillations predicted by combination of kinetic phenomena. J. Electrochem. Soc., 2013, vol. 160, no. 8, рp. 326--335. DOI: https://doi.org/10.1149/2.027308jes

[24] Chang J.H., Chou J.M., Hsieh R.I., et al. Corrosion behaviour of vacuum induction-melted Ni-based alloy in sulphuric acid. Corros. Sci., 2010, vol. 52, iss. 7, рp. 2323--2330. DOI: https://doi.org/10.1016/j.corsci.2010.03.026

[25] Bazyleva O.A., Arginbaeva E.G., Lutskaya S.A. Ways of increasing corrosion resistance of superalloys (review). Trudy VIAM [Proceedings of VIAM], 2018, no. 4 (in Russ.). DOI: https://doi.org/10.18577/2307-6046-2018-0-4-3-8

[26] Kondratyev V.B. Global market of rare-earth metals. Gornaya promyshlennost [Mining Industry Journal], 2017, no. 4, pp. 48--54 (in Russ.).

[27] Renner M. Hochlegierte Austenite fur die Anwendung in Ruherder und bewegterhochkonzentrierter Schwefelsaure (>95 %). Werkst. Korros., 1987, no. 4-S, pp. 191--194.

[28] McAlister D.R., Corey A.G., Ewing L.J. Economically recovering sulphiric acid heat. Chem. Eng. Prog., 1986, vol. 82, no. 7, pp. 34--38.

[29] Amelin A.G., Semenov G.M., Zolotukhin S.E., et al. Sposob polucheniya sernoy kisloty iz serovodoroda [Method for producing sulfuric acid from hydrogen sulfide]. Patent SU 1198000. Appl. 30.12.1983, publ. 15.12.1985 (in Russ.).

[30] Vera-Kastaneda E. Izvlechenie teploty absorbtsii trioksida sery [Recovery of sulfur trioxide heat of absorption]. Patent RF 2672113. Appl. 14.03.2014, publ. 12.11.2018 (in Russ.).