The Physical Properties of Red Mud as Absorbance
Authors: Handoko A.S., Mursito A.T., Nurjaman F., Prasetyo E., Herlina U., Susanti D., Yuwono S.D., Manaf A., Siburian R., Bahfie F. | Published: 04.09.2024 |
Published in issue: #4(115)/2024 | |
DOI: | |
Category: Chemistry | Chapter: Organic Chemistry | |
Keywords: red mud, characterization, adsorbance, nano, properties |
Abstract
Red mud is a waste material generated during alumina refining that has traditionally been viewed as an environmental and disposal challenge. The history of red mud, its traditional uses, and potential applications in the future, particularly in carbon capture were explored. However, recent research has revealed that red mud has potential for a range of applications, includeing environmental remediation, energy conversion, and materials science. In particular, nano red mud has emerged as a promising material due to its high surface area, enhanced adsorption and catalytic properties, and potential for functionalization. Despite these advantages, there are also potential health and safety concerns associated with the use of nano red mud, and the synthesis of this material can be expensive and difficult. Nonetheless, further research is needed to optimize the synthesis and application of red mud and nano red mud, and to address the challenges and limitations associated with their use. The potential applications of red mud and nano red mud are promising, and they have the potential to contribute to a more sustainable and resource-efficient future
Please cite this article as:
Handoko A.S., Mursito A.T., Nurjaman F., et al. The physical properties of red mud as absorbance. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2024, no. 4 (115), pp. 109--120. EDN: VTHNOR
References
[1] Li L.Y. A study of iron mineral transformation to reduce red mud tailings. Waste Manage., 2001, vol. 21, iss. 6, pp. 525--534. DOI: https://doi.org/10.1016/S0956-053X(00)00107-0
[2] Genc-Fuhrman H., Tjell J.C., McConchie D. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol., 2004, vol. 38, iss. 8, pp. 2428--2434. DOI: https://doi.org/10.1021/es035207h
[3] Burchell T.D., Judkins R.R. Passive CO2 removal using a carbon fiber composite molecular sieve. Energy Conserv. Manag., 1996, vol. 37, iss. 6-8, pp. 947--954. DOI: https://doi.org/10.1016/0196-8904(95)00282-0
[4] White C.M., Strazisar B.R., Granite E.J., et al. Separation and capture of CO2 from large stationary sources and sequestration in geological formation-coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc., 2003, vol. 53, iss.6, pp. 645--715. DOI: https://doi.org/10.1080/10473289.2003.10466206
[5] Enick R.M., Beckman E.J., Shi C., et al. Remediation of metal-bearing aqueous waste streams via direct carbonation. Energy Fuels, 2001, vol. 15, iss. 2, pp. 256--262. DOI: https://doi.org/10.1021/ef000245x
[6] Richard S., Rajadurai J.S., Manikandan V., et al. Study of tribological properties of nano-sized red mud particle-reinforced polyester composites. Trans. Indian Inst. Met., 2019, vol. 72, no. 9, pp. 2417--2431. DOI: https://doi.org/10.1007/s12666-019-01694-0
[7] Goldberg D.C., Gray A.G., Hamaker J.C., et al. Processes for extracting Alumina from nonbauxite ores. Washington, National Academies Press, 1970.
[8] Gupta K.K. Extraction of non-ferrous metals. In: Principles of Engineering Metallurgy. New Age International, 2007, pp. 3--35.
[9] Paramguru R.K., Rath P.C., Misra V.N. Trends in red mud utilization --- a review. Miner. Process. Extr. Metall. Rev., 2005, vol. 26, iss. 1, pp. 1--29. DOI: https://doi.org/10.1080/08827500490477603
[10] Rao P.P. The characteristics and genesis discussion of fracture in dry red mud disposal yard. Ind. Const., 2010, vol. 40, pp. 73--77.
[11] Zhang Y., Li L. Recent advances in the synthesis and applications of nano red mud: a review. Chemical Engineering Journal, 2020, vol. 398, art. 125577.
[12] Bhattacharyya K.G., Gupta S.S. Adsorption of heavy metals from aqueous solutions using nano-particles of red mud. Journal of Hazardous Materials, 2019, vol. 371, pp. 709--724.
[13] Hanahan C., McConchie D., Pohl J., et al. Chemistry of seawater neutralization of bauxite refinery residues (red mud). Environ. Eng. Sci., 2004, vol. 21, no. 2, pp. 125--138. DOI: https://doi.org/10.1089/109287504773087309
[14] Glenister D.J., Thornber M.R. Alkalinity of red mud and its applications for management of acid wastes. Chemica, 1995, vol. 85, pp. 100--113.
[15] Piga L., Pochette F., Stoppa L. Recovering metals from red mud generated during alumina production. JOM, 1993, vol. 45, no. 11, pp. 54--59. DOI: https://doi.org/10.1007/BF03222490
[16] Khaitan S., Dzomback D.A., Gregory V.L. Mechanisms of neutralization of bauxite residue by carbon dioxide. J. Environ. Eng., 2009, vol. 135, no. 6, pp. 433--438. DOI: http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000010
[17] Hoang M. Catalysts and processes for treatment of industrial process and waste streams. Patent WO 2000000285. Appl. 25.06.1999, publ. 06.01.2000.
[18] Sushil S., Batra V.S. Catalytic applications of red mud, an aluminium industry waste: a review. Appl. Catal. B, 2008, vol. 81, iss. 1-2, pp. 64--77. DOI: https://doi.org/10.1016/j.apcatb.2007.12.002
[19] Shing J.S. Method of activation of red mud. Patent US 4017425. Appl. 10.11.1972, publ. 12.04.1994.
[20] Cakici A.I., Yanik J., Karayildirim T., et al. Utilization of red mud as catalyst in conversion of waste oil and waste plastics to fuel. J. Mater. Cycles Waste Manag., 2004, vol. 6, no. 1, pp. 20--26. DOI: https://doi.org/10.1007/s10163-003-0101-y
[21] Garg D., Givens E.N. Coal liquefaction catalysis by industrial metallic wastes. Ind. Eng. Chem. Process Des. Dev., 1985, vol. 24, iss. 1, pp. 66--72. DOI: https://doi.org/10.1021/i200028a012
[22] Shaobin W., Aug H.M., Tade M.O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere, 2008, vol. 72, iss. 11, pp. 1621--1635. DOI: https://doi.org/10.1016/j.chemosphere.2008.05.013
[23] Yadav V.S., Prasad M., Khan J., et al. Sequestration of carbon dioxide (CO2) using red mud. J. Hazard. Mater., 2010, vol. 176, no. 1-3, pp. 1044--1050. DOI: https://doi.org/10.1016/j.jhazmat.2009.11.146
[24] Marabini A.M., Plescia P., Maccari D., et al. New materials from industrial and mining wastes: glass-ceramics and glass- and rock-wool fibre. Int. J. Miner. Process., 1998, vol. 53, iss. 1-2, pp. 121--134. DOI: https://doi.org/10.1016/S0301-7516(97)00062-8
[25] Yalcin N., Sevinc V. Utilization of bauxite waste in ceramic glazes. Ceram. Int., 2000, vol. 26, iss. 5, pp. 485--493. DOI: https://doi.org/10.1016/S0272-8842(99)00083-8
[26] Ayres R.U., Holmberg J., Andersson B. Materials and the global environment: waste mining in the 21st century. MRS Bulletin, 2001, vol. 26, no. 6, pp. 477--480. DOI: https://doi.org/10.1557/mrs2001.119
[27] Cundi W., Hirano Y., Terai T., et al. Preparation of geopolymeric monoliths from red mud--PFBC ash fillers at ambient temperature. Proc. World Congress Geopolymer, 2005, pp. 85--87.
[28] Lyon R.E., Balaguru P.N., Foden A., et al. Fire resistant aluminosilicate composites. Fire Mater., 1997, vol. 21, pp. 67--73.
[29] Giancaspro J., Balaguru P.N., Lyon R.E. Use of inorganic polymer to improve the fire response of balsa sandwich structures. J. Mater. Civ. Eng., 2006, vol. 18, pp. 390--397. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(390)
[30] Buchwald A., Hohmann M., Kaps C., et al. Stabilized foam clay material with high performance thermal insulation properties. Ceramic Forum International, 2004, vol. 81, no. 8, pp. 39--42.
[31] Barbosa V.F.F., MacKenzie K.J.D. Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett., 2003, vol. 57, no. 9, pp. 1477--1482. DOI: https://doi.org/10.1016/S0167-577X(02)01009-1
[32] Zhang S.Z., Gong K.C., Lu H.W. Novel modification method for inorganic geopolymer by using water soluble organic polymers. Mater. Lett., 2004, vol. 58, iss. 7-8, pp. 1292--1296. DOI: https://doi.org/10.1016/j.matlet.2003.07.051
[33] Bonenfant D., Kharoune L., Sauve S., et al. CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature. Ind. Eng. Chem. Res., 2008, vol. 47, iss. 20, pp. 7617--7622. DOI: https://doi.org/10.1021/ie7017228